Molecular Biology

, 45:529 | Cite as

Evolution of seed storage globulins and cupin superfamily

  • A. D. ShutovEmail author
  • I. A. Kakhovskaya


An extensive superfamily of cupins (clan cl09118) currently combines thousands of functionally and structurally diverse prokaryote and eukaryote proteins, which contain a β-barrel of antiparallel β-strands (cupin module). Possible ways of the formation of the cupin superfamily were suggested based on the comparison of primary and tertiary structures of proteins from several conserved families of cupins including seed storage globulins and plant oxalate oxydases (germins), and bacterial oxalate decarboxylases, gentisate dioxygenases and epimerases. The origin of the two-domain structure of seed storage globulins from cyanobacterial two-domain oxalate decarboxylases has been deduced. The evolutionary pathway of single-domain germins previously suggested to be immediate progenitors of storage globulins was traced back. Common evolutionary roots of germins and oxalate decarboxylases descend from recent bacterial and archaebacterial proteins whose primitive structure is restricted to the cupin module. These root proteins reflect the hypothetical structure of a pro-cupin that probably gave rise to at least a part of the total diversity of members of the cupin superfamily (for instance, to the cupin module of gentisate dioxygenases). The major dilemma for the description of the cupin superfamily is distinguishing evolutionary divergence from convergence. The structural convergence can be exemplified by formation of a β-barrel inside of the extremely conserved structures of the otherwise unrelated epimerases from Archaea and bacteria.


seed storage globulins germins oxalate decarboxylases cupin superfamily molecular evolution 



oxalate decarboxylase




dTDP-4-dehydrorhamnose 3,5-epimerase


  1. 1.
    Shewry P.R., Casey R. 1999. Seed Proteins. Dordrecht: Cluwer.Google Scholar
  2. 2.
    Lawrence M.C., Izard T., Beuchat M., Blagrove R.J., Colman P.M. 1994. Structure of phaseolin in 2.2 Å resolution. J. Mol. Biol. 238, 748–776.PubMedCrossRefGoogle Scholar
  3. 3.
    Shutov A.D., Kakhovskaya I.A., Braun H., Bäumlein H., Muntz K. 1995. Legumin and vicilin-like seed storage proteins: Evidence for a common single-domain ancestral gene. J. Mol. Evol. 41, 1057–1069.PubMedCrossRefGoogle Scholar
  4. 4.
    Adachi M., Takenaka Y., Gidamis A.B., Mikami B., Utsumi S. 2001. Crystal structure of soybean proglycinin A1aB1b homotrimer. J. Mol. Biol. 305, 291–305.PubMedCrossRefGoogle Scholar
  5. 5.
    Shutov A.D., Braun H., Chesnokov Yu.V., Bäumlein H. 1998. A gene encoding a vicilin-like protein is specifically expressed in fern spores. Evolutionary pathway of seed storage globulins. Eur. J. Biochem. 252, 79–89.PubMedCrossRefGoogle Scholar
  6. 6.
    Shutov A.D., Bäumlein H. 1999. Origin and evolution of seed storage globulins. In: Seed Proteins. Eds. Casey R., Shewry P. Dordrecht: Kluwer, pp. 543–561.Google Scholar
  7. 7.
    Shutov A.D., Blattner F.R., Bäumlein H., Muntz K. 2003. Storage and mobilization as antagonistic functional constraints of seed storage globulin evolution. J. Exp. Bot. 54, 1645–1654.PubMedCrossRefGoogle Scholar
  8. 8.
    Bäumlein H., Braun H., Kakhovskaya I.A., Shutov A.D. 1995. Seed storage proteins of spermatophytes share a common ancestor with desiccation proteins of fungi. J. Mol. Evol. 41, 1070–1075.PubMedCrossRefGoogle Scholar
  9. 9.
    Dunwell J.M., Khuri S., Gane P.J. 2000. Microbial relatives of the seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol. Mol. Biol. Rev. 64, 153–179.PubMedCrossRefGoogle Scholar
  10. 10.
    Dunwell J.M., Culham A., Carter C.E., Sosa-Aguirre C.R., Goodenpugh P.W. 2001. Evolution of functional diversity in the cupin seperfamily. Trends Biochem. Sci. 26, 740–746.PubMedCrossRefGoogle Scholar
  11. 11.
    Woo E.J., Dunwell J.M., Goodenough P.W., Marvier A.C., Pikersgill R.W. 2000. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nature Struct. Biol. 7, 1036–1040.PubMedCrossRefGoogle Scholar
  12. 12.
    Dunwell J.M., Gane P.J. 1998. Microbial relatives of seed storage proteins: Conservation of motifs in a functionally diverse superfamily of enzymes. J. Mol. Evol. 46, 147–154.PubMedCrossRefGoogle Scholar
  13. 13.
    Martin W., Herrmann R.G. 1998. Gene transfer from organelles to the nucleus: How much, what happens, and why. Plant Physiol. 118, 9–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Van de Peer Y., De Wachter R. 1994. TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10, 569–570.PubMedGoogle Scholar
  15. 15.
    Shutov A.D., Blattner F.R., Bäumlein H. 1999. Evolution of structurally conserved protein module from Archaea to plants. Trends Genet. 15, 348–349.PubMedCrossRefGoogle Scholar
  16. 16.
    Adachi M., Kanamori J., Masuda T., Yagasaki K., Kitamura K., Mikami B., Utsumi S. 2003. Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer. Proc. Natl. Acad. Sci. U. S. A. 100, 7395–7400.PubMedCrossRefGoogle Scholar
  17. 17.
    Tottey S., Waldron K.J., Firbank S.J., Reale B., Bessant C., Sato K., Cheek T.R., Gray J., Banfield M.J., Dennison C., Robinson N.J. 2008. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature. 455, 1138–1142.PubMedCrossRefGoogle Scholar
  18. 18.
    Doolittle R.F. 1995. The multiplicity of domains in proteins. Ann. Rev. Biochem. 64, 287–314.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen J., Li W., Wang M., Zhu G., Liu D., Sun F., Hao N., Li X., Rao Z., Zhang X.C. 2008. Crystal structure and mutagenic analysis of GDOsp, a gentisate 1,2-dioxygenase from Silicibacter pomeroyi. Protein Sci. 17, 1362–1373.PubMedCrossRefGoogle Scholar
  20. 20.
    Thomas E.E., Srebro N., Sebat J., Navin N., Healy J., Mishra B., Wigler M. 2004. Distribution of short paired duplications in mammalian genomes. Proc. Natl. Acad. Sci. U. S. A. 101, 10349–10354.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Laboratory of Plant BiochemistryState University of MoldovaChişinǎuMoldova

Personalised recommendations