Advertisement

Molecular Biology

, Volume 44, Issue 5, pp 776–786 | Cite as

Downregulation of activated leukemic oncogenes AML1-ETO and RUNX1(K83N) expression with RNA-interference

  • P. V. Spirin
  • D. Baskaran
  • N. N. Orlova
  • A. V. Rulina
  • N. A. Nikitenko
  • E. L. Chernolovskaya
  • M. A. Zenkova
  • V. V. Vlassov
  • P. M. Rubtsov
  • P. M. Chumakov
  • C. Stocking
  • V. S. PrassolovEmail author
Cell Molecular Biology

Abstract

In the present study, we have applied the siRNA approach to reduce the expression of AML1-ETO and RUNX1(K83N) oncogenes, which are frequently found in leukemic cells. We have designed small hairpin RNAs (shRNA) for targeting AML1-ETO oncogene and a region close to the 5′-untranslated region of mRNA for the mutant RUNX1(K83N) oncogene and expressed the shRNAs in lentiviral vectors. We report a stable reduction in expression of oncogenes following the introduction of shRNAs into cells.

Key words

regulation of gene expression posttranscriptional regulation of expression RNA-interference acute myeloid leukemia (AML) siRNA shRNA lentiviral vectors 

Abbreviations

AML

Acute Myeloid Leykosis

FAB

Franco-American-British classification of leucosis

HSC

Hemopoietic Stem Cell

siRNA

small interfering RNA

shPHK

small hairpin interfering RNA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weinberg R.A. 2007. The Biology of Cancer. NY: Garland Science.Google Scholar
  2. 2.
    Jemal A., Siegel R., Ward E., Hao Y., Xu J., Thun M.J. 2009. Cancer statistics. Ca. Cancer. J. Clin. 59, 225–249.CrossRefPubMedGoogle Scholar
  3. 3.
    Peterson L.F., Zhang D.E. 2004. The 8;21 translocation in leukemogenesis. Oncogene. 23, 4255–4562.CrossRefPubMedGoogle Scholar
  4. 4.
    Imai Y., Kurokawa M., Izutsu K., et al. 2000. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood. 96, 3154–3160.PubMedGoogle Scholar
  5. 5.
    Osato M., Asou N., Abdalla E., et al. 1999. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2B gene associated with myeloblastic leukemia. Blood. 93, 1817–1824.PubMedGoogle Scholar
  6. 6.
    Michaud J., Wu F., Osato M., et al. 2002. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood. 99, 1364–1372.CrossRefPubMedGoogle Scholar
  7. 7.
    Cammenga J., Niebuhr B., Horn S., Bergholz U., Putz G., Buchholz F., Löhler J., Stocking C. 2007. RUNX1 DNA-binding mutants, associated with minimally differentiated acute myelogenous leukemia, disrupt myeloid differentiation. Cancer Res. 67, 537–545.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang Y.Y., Zhou G.B., Yin T., et al. 2005. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: Implication in stepwise leukemogenesis and response to Gleevec. Proc. Natl. Acad. Sci. USA. 102, 1104–1109.CrossRefPubMedGoogle Scholar
  9. 9.
    Peterson L.F., Boyapati A., Ahn E.Y., Biggs J.R., Okumura A.J., Lo M.C., Yan M., Zhang D.E. 2007. Acute myeloid leukemia with the 8q22;21q22 translocation: Secondary mutational events and alternative t(8;21) transcripts. Blood. 110, 799–805.CrossRefPubMedGoogle Scholar
  10. 10.
    Bantounas I., Phylactou L.A., Uney J.B. 2004. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol. 33, 545–557.CrossRefPubMedGoogle Scholar
  11. 11.
    Vilgelm A.E., Chumakov S.P., Prassolov V.S. 2006. RNA interference: Biology and prospects of application in biomedicine and biotechnology. Mol. Biol. 40, 339–354.CrossRefGoogle Scholar
  12. 12.
    Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494–498.CrossRefPubMedGoogle Scholar
  13. 13.
    Caplen N.J., Parrish S., Imani F., Fire A., Morgan R.A. 2001. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA. 98, 9742–9747.CrossRefPubMedGoogle Scholar
  14. 14.
    Fang Z.H., Dong C.L., Chen Z., Zhou B., Liu N., Lan H.F., Liang L., Liao W.B., Zhang L., Han Z.C. 2009. Transcriptional regulation of survivin by c-Myc in BCR/ABL-transformed cells: Implications in anti-leukaemic strategy. J. Cell Mol. Med. 13, 2039–2052.CrossRefPubMedGoogle Scholar
  15. 15.
    Heidenreich O. 2009. Targeting oncogenes with siRNAs. Methods Mol. Biol. 487, 221–242.PubMedGoogle Scholar
  16. 16.
    Thomas M., Greil J., Heidenreich O. 2006. Targeting leukemic fusion proteins with small interfering RNAs: Recent advances and therapeutic potentials. Acta Pharmacol. Sin. Mar. 27, 273–281.CrossRefGoogle Scholar
  17. 17.
    Nechipurenko O., Rossi L., Moore B. 2007. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 35, 1–10.Google Scholar
  18. 18.
    Volkov A.A., Kruglova N.S., Meschaninova M.I., Venyaminova A.G., Zenkova M.A., Vlassov V.V., Chernolovskaya E.L. 2009. Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect. Oligonucleotides. 19, 191–202.CrossRefPubMedGoogle Scholar
  19. 19.
    Fagard M., Vaucheret H. 2000. Systemic silencing signals. Plant Mol. Biol. 43, 285–293.CrossRefPubMedGoogle Scholar
  20. 20.
    Singer O., Verma I.M. 2008. Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr. Gene. Ther. 8, 483–488.CrossRefPubMedGoogle Scholar
  21. 21.
    Manjunath N., Wu H., Subramanya S., Shankar P. 2009. Lentiviral delivery of short hairpin RNAs. Adv. Drug Delivery Rev. 61, 732–745.CrossRefGoogle Scholar
  22. 22.
    Schwieger M., Löhler J., Friel J., Scheller M., Horak I., Stocking C. 2002. AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J. Exp. Med. 196, 1227–1240.CrossRefPubMedGoogle Scholar
  23. 23.
    Kravchenko J.E., Ilyinskaya G.V., Komarov P.G., Agapova L.S., Kochetkov D.V., Strom E., Frolova E.I., Kovriga I., Gudkov A.V., Feinstein E., Chumakov P.M. 2008. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc. Natl. Acad. Sci. USA. 105, 6302–6307.CrossRefPubMedGoogle Scholar
  24. 24.
    Bergemann J., Kuhlcke K., Fehse B., Ratz I., Ostertag W., Lother H. 1995. Excision of specific DNA-sequences from integrated retroviral vectors via site-specific recombination. Nucleic Acids Res. 21, 4451–4456.CrossRefGoogle Scholar
  25. 25.
    Spirin P.V., Baskaran D., Rubtsov P.M., Zenkova M.A., Vlasov V.V., Chernolovskaya E.L., Prassolov V. S. 2009. A comparison of target gene silencing using syntheti-cally modified siRNA and shRNA that express recombinant lentiviral vectors. Acta Naturae. 2, 86–90.Google Scholar
  26. 26.
    Takenokuchi M., Yashida C., Takeuchi K., Nakamachi Y., Mukai M., Kondo S., Kumagai S., Saigo K., Murayama T., Koizumi T., Tatsumi E. 2004. Quantitative nested reverse transcriptase PCR vs. real-time PCR for measuring AML1/ETO (MTG8) transcripts. Clin. Lab. Haem. 26, 107–114CrossRefGoogle Scholar
  27. 27.
    Koldehoff M., Kordelas L., Beelen D.W., Elmaagacli A.H. 2010. Small interfering RNA against BCR-ABL transcripts sensitize mutated T315I cells to nilotinib. Haematologica. 95, 388–397.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • P. V. Spirin
    • 1
  • D. Baskaran
    • 1
  • N. N. Orlova
    • 1
  • A. V. Rulina
    • 1
  • N. A. Nikitenko
    • 1
  • E. L. Chernolovskaya
    • 2
  • M. A. Zenkova
    • 2
  • V. V. Vlassov
    • 2
  • P. M. Rubtsov
    • 1
  • P. M. Chumakov
    • 1
  • C. Stocking
    • 3
  • V. S. Prassolov
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Chemical Biology and Fundamental Medicine, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Heinrich-Pette-Institute for Experimental Virology and ImmunologyHamburgGermany

Personalised recommendations