Molecular Biology

, Volume 44, Issue 3, pp 431–438 | Cite as

Mutations in the DNA polymerase and thymidine kinase genes of herpes simplex virus clinical isolates resistant to antiherpetic drugs

  • A. N. Korovina
  • A. A. Gus’kova
  • M. Yu. Skoblov
  • V. L. Andronova
  • G. A. Galegov
  • S. N. Kochetkov
  • M. K. Kukhanova
  • Yu. S. Skoblov
Cell Molecular Biology

Abstract

Primary structures of DNA polymerase (ul30) and thymidine kinase (ul23) genes from several herpes simplex virus type 1 (HSV-1) clinical isolates di ffering in sensitivity to several antiherpetic drugs were determined and compared to those of two laboratory HSV-1 strains one of which (L2) was sensitive and the other (L2/R) was resistant to acyclovir. The phylogenetic sequence analysis showed that the ul30 and ul23 sequences of clinical isolates were close to those of L2, and that ul30 conserved regions differed between HSV-1 isolates and L2 only in point mutations and degenerated substitutions. Several new mutations in the HSV-1 DNA polymerase and thymidine kinase functional domains were identified as substitutions associated with strain resistance to ACV and other antiherpetic drugs.

Key words

DNA polymerase thymidine kinase drug resistance herpes simplex virus primary structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stranska R., van Loon A.M., Polman M., Beersma M.F., Bredius R.G., Lankester A.C., Meijer E., Schuurman R. 2004. Genotypic and phenotypic characterization of acyclovir-resistant herpes simplex viruses isolated from haematopoietic stem cell transplant recipients. Antivir. Ther. 9, 565–575.PubMedGoogle Scholar
  2. 2.
    Andrei G., Fiten R, Froeyen M., de Clercq E., Opdenakker G., Snoeck R. 2007. DNA polymerase mutations in drug-resistant herpes simplex virus mutants determine in vivo neurovirulence and drug-enzyme interactions. Antivir. Ther. 12, 719–732.PubMedGoogle Scholar
  3. 3.
    Field HJ., Darby G.K. 1980. Strategies of drag resistance in herpes simplex. Nature. 286, 842.CrossRefPubMedGoogle Scholar
  4. 4.
    Gilbert C, Bestman-Smith J., Boivin G. 2002. Resistance of herpesviruses to antiviral drugs: Clinical impacts and molecular mechanisms. Drug Resist. Updat. 5, 88–114.CrossRefPubMedGoogle Scholar
  5. 5.
    Frobert E., Cortay J.C., Ooka T., Najioullah F., Thouvenot D., Lina B., Morfin F. 2008. Genotypic detection of acyclovir-resistant HSV-1: Characterization of 67 ACV-sensitive and 14 ACV-resistant viruses. Antiviral. Res. 79, 28–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Coen D.M. 1991. The implications of resistance to antiviral agents for herpesvirus drug targets and drug therapy. Antiviral. Res. 15, 287–300.CrossRefPubMedGoogle Scholar
  7. 7.
    Guskova A.A., Zagurny A.V., Skoblov M.Y., Baranova A.V., Andronova V.L., Yankovsky N.K., Galegov G.A., Skoblov Y.S. 2005. Molecular genetic analysis of thymidine kinase of the herpes simplex virus type 1. Mol. Biol. 39, 137–140.CrossRefGoogle Scholar
  8. 8.
    L’vov N.D., Andronova V.L., Leont’eva N.A., Galegov G.A. 1999. Isolation of acyclovir-resistant herpes simplex virus strains from clinical material. Vopr. Virusol. 44, 247–249.PubMedGoogle Scholar
  9. 9.
    De Clercq E., Descamps J., Verhelst G., Walker R.T., Jones A.S., Torrence P.F, Shugar D. 1980. Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus. J. Infect. Dis. 141, 563–574.Google Scholar
  10. 10.
    Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weight-ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.CrossRefPubMedGoogle Scholar
  11. 11.
    Brodsky L.I., Drachev A.L., Leontovich A.M., Feranchuk S.I. 1993. A novel method of multiple alignment of biopolymer sequences. Biosystems. 30, 65–79.CrossRefPubMedGoogle Scholar
  12. 12.
    Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  13. 13.
    Quinn J.P., Mcgeoch D.J. 1985. DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Res. 13, 8143–8163.CrossRefPubMedGoogle Scholar
  14. 14.
    Suzutani T., Ishioka K., De Clercq E., Ishibashi K., Kaneko H., Kira T., Hashimoto K., Ogasawara M., Ohtani K., Wakamiya N., Saijo M. 2003. Differential mutation patterns in thymidine kinase and DNA polymerase genes of herpes simplex virus type 1 clones passaged in the presence of acyclovir or penciclovir. Antimicrob. Agents Chemother. 47, 1707–1713.CrossRefPubMedGoogle Scholar
  15. 15.
    Suzutani T., Saijo M., Nagamine M., Ogasawara M., Azuma M. 2000. Rapid phenotypic characterization method for herpes simplex virus and Varicella-Zoster virus thymidine kinases to screen for acyclovir-resistant viral infection. J. Clin. Microbiol. 38, 1839–1844.PubMedGoogle Scholar
  16. 16.
    Kost R.G., Hill E.L., Tigges M., Straus S.E. 1993. Brief report: recurrent acyclovir-resistant genital herpes in an immunocompetent patient. N. Engl. J. Med. 329, 1777–1782.CrossRefPubMedGoogle Scholar
  17. 17.
    Skoblov Y.S., Karpenko I.L., Jasko M.V., Kukhanova M.K., Andronova V.L., Galegov G.A., Sidorov G.V, Myasoedov N.F. 2007. Cell metabolism of acyclovir phosphonate derivatives and antiherpesvirus activity of their combinations with alpha2-interferon. Chem. Biol. Drug. Des. 69, 429–434.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu S., Knafels J.D., Chang J.S.,Waszak G.A., Baldwin E.T., Deibel M.R., Jr., Thomsen D.R., Homa F.L., Wells P.A., Tory M.C., Poorman R.A., Gao H., Qiu X., Seddon A.P. 2006. Crystal structure of the herpes simplex virus 1 DNA polymerase. J. Biol. Chem. 281, 18193–18200.CrossRefPubMedGoogle Scholar
  19. 19.
    Wyles D.L., Patel A., Madinger N., Bessesen M., Krause P.R., Weinberg A. 2005. Development of herpes simplex virus disease in patients who are receiving cidofovir. Clin. Infect. Dis. 41, 676–680.CrossRefPubMedGoogle Scholar
  20. 20.
    Matthews J.T., Carroll R.D., Stevens J.T., Haffey M.L. 1989. In vitro mutagenesis of the herpes simplex virus type 1 DNA polymerase gene results in altered drug sensitivity of the enzyme. J. Virol. 63, 4913–4918.PubMedGoogle Scholar
  21. 21.
    Matthews J.T., Terry B.J., Field A.K. 1993. The structure and function of the HSV DNA replication proteins: Defining novel antiviral targets. Antiviral Res. 20, 89–114.CrossRefPubMedGoogle Scholar
  22. 22.
    Hwang Y.T., Smith J.F., Gao L., Hwang C.B. 1998. Mutations in the ExoIII motif of the herpes simplex virus DNA polymerase gene can confer altered drug sensitivities. Virology. 246, 298–305.CrossRefPubMedGoogle Scholar
  23. 23.
    Kuhn F.J., Knopf C.W. 1996. Herpes simplex virus type 1 DNA polymerase. Mutational analysis of the 3′-5′-exonuclease domain. J. Biol. Chem. 271, 29245–29254.CrossRefPubMedGoogle Scholar
  24. 24.
    Bestman-Smith J., Boivin G. 2003. Drug resistance patterns of recombinant herpes simplex virus DNA polymerase mutants generated with a set of overlapping cosmids and plasmids. J. Virol. 77, 7820–7829.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. N. Korovina
    • 1
  • A. A. Gus’kova
    • 2
  • M. Yu. Skoblov
    • 2
  • V. L. Andronova
    • 3
  • G. A. Galegov
    • 3
  • S. N. Kochetkov
    • 1
  • M. K. Kukhanova
    • 1
  • Yu. S. Skoblov
    • 4
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Research Center for Medical GeneticsRussian Academy of Medical SciencesMoscowRussia
  3. 3.Ivanovsky Institute of VirologyRussian Academy of Medical SciencesMoscowRussia
  4. 4.Shemyakin & Ovchinnikov Institute ofBioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations