Molecular Biology

, Volume 44, Issue 1, pp 128–139 | Cite as

Attenuation regulation of the amino acid and aminoacyl-tRNA biosynthesis operons in bacteria: A comparative genomic analysis

  • K. V. Lopatovskaya
  • A. V. Seliverstov
  • V. A. Lyubetsky


A large-scale search for attenuation regulation in bacteria was performed using two original computer programs, which modeled the attenuation regulation and multiple alignment along a phylogenetic tree. The programs are available at Candidate attenuations were predicted for many organisms belonging to α-, ß-, γ-, and δ-proteobacteria, Actinobacteria, Bact eroidetes/Chlorobi, Firmicutes, and Thermotoga; in Cloroflexi, the corresponding sites were found upstream of hisG, hisZ, hisS, pheA, pheST, trpEG, trpA, trpB, trpE, trpS, thrA, thrS, leuA, leuS, ilvB, ilvI, ilvA, ilvC, ilvD, and ilvG. Searches were conducted across all bacterial genomes contained in GenBank, NCBI. Other bacterial taxa were not predicted to have attenuation. It was possible to assume, in some cases, that RNA triplexes play a substantial role in the formation of an active antiterminator and terminator or pseudoknots during termination. The attenuation regulation of Lactobacillus lactis lysQ was assumed to depend on the histidyl-tRNA concentration. Several types of attenuation regulation and the evolution of attenuation are discussed.

Key words

gene expression in bacteria attenuation regulation large-scale searches attenuation prediction algorithms tree-based multiple alignment algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vitreschak A.G., Lyubetskaya E.V., Shirshin M.A., Gelfand M.S., Lyubetsky V.A. 2004. Attenuation regulation of amino acid biosynthetic operons in proteobacteria: Comparative genomics analysis. FEMS Microbiol. Lett. 234, 357–370.CrossRefPubMedGoogle Scholar
  2. 2.
    Seliverstov A.V., Putzer H., Gelfand M.S., Lyubetsky V.A. 2005. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria. BMC Microbiol. 5, 54.CrossRefPubMedGoogle Scholar
  3. 3.
    Grundy F.J., Henkin T.M. 2003. The T box and S box transcription termination control systems. Front Biosci. 8, d20–d31.CrossRefPubMedGoogle Scholar
  4. 4.
    Grundy F.J., Henkin T.M. 2004. Regulation of gene expression by effectors that bind to RNA. Curr. Opin. Microbiol. 7, 126–131.CrossRefPubMedGoogle Scholar
  5. 5.
    Mandal M., Breaker R.R. 2004. Gene regulation by riboswitches. Nature Rev. Mol. Cell. Biol. 5, 451–463.CrossRefGoogle Scholar
  6. 6.
    Vitreschak A.G., Rodionov D.A., Mironov A.A., Gelfand M.S. 2004. Riboswitches: The oldest mechanism for the regulation of gene expression? Trends Genet. 20, 44–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Das A., Crawford I.P., Yanofsky C. 1982. Regulation of tryptophan operon expression by attenuation in cell-free extracts of Escherichia coli. J. Biol. Chem. 15, 8795–8798.Google Scholar
  8. 8.
    Henkin T.M., Yanofsky C. 2002. Regulation by transcription attenuation in bacteria: How RNA provides instructions for transcription termination/antitermination decisions. Bioessays. 24, 700–707.CrossRefPubMedGoogle Scholar
  9. 9.
    Yanofsky C. 2004. The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis. Trends Genet. 20, 367–374.CrossRefPubMedGoogle Scholar
  10. 10.
    Burillo S., Luque I., Fuentes I., Contreras A. 2004. Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J. Bacteriol. 186, 3346–3354.CrossRefPubMedGoogle Scholar
  11. 11.
    Heery D.M., Dunican L.K. 1993. Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of Corynebacterium glutamicum: Identification of a mutation in the trp leader sequence. Appl. Environ. Microbiol. 59, 791–799.Google Scholar
  12. 12.
    Lin C., Pradkar A.S., Vining L.C. 1998. Regulation of an antranilate synthase gene in Streptomyces venezuelae by trp attenuator. Microbiology. 144, 1971–1980.CrossRefPubMedGoogle Scholar
  13. 13.
    Lyubetsky V.A., Pirogov S.A., Rubanov L.I., Seliverstov A.V. 2007. Modeling classic attenuation regulation of gene expression in bacteria. J. Bioinform. Comput. Biol. 5, 155–180.CrossRefPubMedGoogle Scholar
  14. 14.
    Chastain M., Tinoco I., Jr. 1992. Poly(rA) binds poly(rG) poly(rC) to form a triple helix. Nucleic Acids Res. 20, 315–318.CrossRefPubMedGoogle Scholar
  15. 15.
    Knorre D.G., Myzina S.D. 2000. Biologicheskaya khimiya (Biological Chemistry). Moscow: Nauka.Google Scholar
  16. 16.
    Semerad C.L., Maher L.J. 1994. Exclusion of RNA strands from a purine motif triple helix. Nucleic Acids Res. 22, 5321–5325.CrossRefPubMedGoogle Scholar
  17. 17.
    Carmona P., Molina M. 2002. Binding of oligonucleotides to a viral hairpin forming RNA triplexes with parallel G*GC triplets. Nucleic Acids Res. 30, 1333–1337.CrossRefPubMedGoogle Scholar
  18. 18.
    Klinck R., Guitteta E., Liquier J., Taillandier E., Gouyetteb C., Huynh-Dinhby T. 1994. Spectroscopic evidence for an intramolecular RNA triple helix. FEBS Lett. 355, 297–300.CrossRefPubMedGoogle Scholar
  19. 19.
    Holland J.A., Hoffman D.W. 1996. Structural features and stability of an RNA triple helix in solution. Nucleic Acids Res. 24, 2841–2848.CrossRefPubMedGoogle Scholar
  20. 20.
    Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Wheeler D.L. 2008. GenBank. Nucleic Acids Res. 36, 25–30.CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Rubanov L.I., Lyubetsky V.A. 2007. RNAmodel Web Server: Modeling classic attenuation in bacteria. In Silico Biol. 7, 285–308.PubMedGoogle Scholar
  23. 23.
    Lyubetskaya E.V., Gorbunov K.Yu. 2008. Algorithms for reconstructing evolution of regulatory signals. Proc. 51st Sci. Conf. “Current Problems in Fundamental and Applied Sciences,” Moscow Physical Technical Institute (MFTI). Moscow: MFTI, part 1, pp. 142–145.Google Scholar
  24. 24.
    Craster H.L., Potter C.A., Baumberg S. 1999. End-product control of branched-chain amino acid biosynthesis genes in Streptomyces coelicolor A3 (2): Paradoxical relationships between DNA sequence and regulatory phenotype. Microbiology. 145, 2375–2384.PubMedGoogle Scholar
  25. 25.
    Cummings L., Riley L., Black L., Souvorov A., Resenchuk S., Dondoshansky I., Tatusova T. 2002. Genomic BLAST: Custom-defined virtual databases for complete and unfinished genomes. FEMS Microbiol. Lett. 216, 133–138.CrossRefPubMedGoogle Scholar
  26. 26.
    Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefPubMedGoogle Scholar
  27. 27.
    Isambert H., Siqqia E.D. 2000. Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme. Proc. Natl. Acad. Sci. USA. 97, 6515–6520.CrossRefPubMedGoogle Scholar
  28. 28.
    Tianbing Xia, John Santa Lucia, Jr, Mark E. Burkard, Ryszard Kierzek, Susan J. Schroeder, Xiaoqi Jiao, Christopher Cox, Douglas H. Turner. 1998. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with watson-crick base pairs. Biochemistry. 37, 14719–14735.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • K. V. Lopatovskaya
    • 1
  • A. V. Seliverstov
    • 1
  • V. A. Lyubetsky
    • 1
  1. 1.Kharkevich Institute of Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations