Molecular Biology

, Volume 43, Issue 6, pp 897–916 | Cite as

Effector proteins of chlamydiae

  • A. S. KaryaginaEmail author
  • A. V. Alexeevsky
  • S. A. Spirin
  • N. A. Zigangirova
  • A. L. Gintsburg


This review summarizes the recently published data on the molecular mechanisms of Chlamydiae-host cell interaction, first of all, on chlamydial effector proteins. Such proteins, along with type III transport system proteins, which transfer many effector proteins into the host cytoplasm, are attractive targets for drug therapy of chlamydial infections. The majority of the data concerns two species, Chlamydia trachomatis and Chlamydophila pneumoniae. The C. trachomatis protein TARP, which is presynthesized in elementary bodies, plays an essential role in the initial stages of infection. The pathogen proteins that are involved in the next stage, which is the intracellular inclusion traffic to the centrosome, are C. trachomatis CT229 and C. pneumoniae Cpn0585, which interact with cell Rab GTPases. In C. trachomatis, IncA plays a key role in the fusion of chlamydial inclusions, CT847 modulates the life cycle of the host cell, and LDA3 is essential for the acquisition of nutrients. The protease CPAF and the inclusion membrane proteins IncG and CADD are involved in suppressing apoptosis of infected cells. The proteases CPAF and CT441 and the deubiquitinating protein ChlaDub1 help the pathogen to evade the immune response.

Key words

chlamydial effector proteins inclusion membrane proteins type III transport system Chlamydia trachomatis Chlamydia pneumoniae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelrahman Y.M., Belland R.J. 2005. The chlamydial developmental cycle. FEMS Microbiol. Rev. 29, 949–959.PubMedCrossRefGoogle Scholar
  2. 2.
    Hybiske K., Stephens R.S. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA. 104, 11430–11435.PubMedCrossRefGoogle Scholar
  3. 3.
    Caldwell H.D., Schachter J. 1982. Antigenic analysis of the major outer membrane protein of Chlamydia spp. Infect. Immun. 35, 1024–1031.PubMedGoogle Scholar
  4. 4.
    Zhang Y.X., Stewart S., Joseph T., Taylor H.R., Caldwell H.D. 1987. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. J. Immunol. 138, 575–581.PubMedGoogle Scholar
  5. 5.
    Cerrone M.C., Ma J.J., Stephens R.S. 1991. Cloning and sequence of gene for heat shock protein 60 from Chlamydia trachomatis and immunological reactivity of protein. Infect. Immun. 59, 79–90.PubMedGoogle Scholar
  6. 6.
    Li Z., Chen C., Chen D., Wu Y., Zhong Y., Zhong G. 2008. Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect. Immun. 76, 2746–2757.PubMedCrossRefGoogle Scholar
  7. 7.
    Sharma J., Bosnic A.M., Piper J.M., Zhong G. 2004. Human antibody responses to a Chlamydia-secreted protease factor. Infect. Immun. 72, 7164–7171.PubMedCrossRefGoogle Scholar
  8. 8.
    Crane D.D., Carlson J.H., Fischer E.R., Bavoil P., Hsia R.C., Tan C., Kuo C.C., Caldwell H.D. 2006. Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. Proc. Natl. Acad. Sci. USA. 103, 1894–1899.PubMedCrossRefGoogle Scholar
  9. 9.
    Barker C.J., Beagley K.W., Hafner L.M., Timms P. 2008. In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB. Vaccine. 26, 1285–1296.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim S.K., Angevine M., Demick K., Ortiz L., Rudersdorf R., Watkins D., DeMars R. 1999. Induction of HLA class I-restricted CD8+ CTLs specific for the major outer membrane protein of Chlamydia trachomatis in human genital tract infections. J. Immunol. 162, 6855–6866.PubMedGoogle Scholar
  11. 11.
    Gervassi A.L., Grabstein K.H., Probst P., Hess B., Alderson M.R., Fling S.P. 2004. Human CD8+ T cells recognize the 60-kDa cysteine-rich outer membrane protein from Chlamydia trachomatis. J. Immunol. 173, 6905–6913.PubMedGoogle Scholar
  12. 12.
    Grotenbreg G.M., Roan N.R., Guillen E., Meijers R., Wang J.H., Bell G.W., Starnbach M.N., Ploegh H.L. 2008. Discovery of CD8+ T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. Proc. Natl. Acad. Sci. USA. 105, 3831–3836.PubMedCrossRefGoogle Scholar
  13. 13.
    Starnbach M.N., Loomis W.P., Ovendale P., Regan D., Hess B., Alderson M.R., Fling S.P. 2003. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8+ T cell response. J. Immunol. 171, 4742–4749.PubMedGoogle Scholar
  14. 14.
    Fling S.P., Sutherland R.A., Steele L.N., Hess B., D’Orazio S.E., Maisonneuve J., Lampe M.F., Probst P., Starnbach M.N. 2001. CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA. 98, 1160–1165.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhong G., Fan T., Liu L. 1999. Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J. Exp. Med. 189, 1931–1938.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhong G., Liu L., Fan T., Fan P., Ji H. 2000. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in Chlamydia infected cells. J. Exp. Med. 191, 1525–1534.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhong G., Fan P., Ji H., Dong F., Huang Y. 2001. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J. Exp. Med. 193, 935–942.PubMedCrossRefGoogle Scholar
  18. 18.
    Fan P., Dong F., Huang Y., Zhong G. 2002. Chlamydia pneumoniae secretion of a protease-like activity factor for degrading host cell transcription factors required for major histocompatibility complex antigen expression. Infect. Immun. 70, 345–349.PubMedCrossRefGoogle Scholar
  19. 19.
    Kawana K., Quayle A.J., Ficarra M., et al. 2007. CD1d degradation in Chlamydia trachomatis-infected epithelial cells is the result of both cellular and chlamydial proteasomal activity. J. Biol. Chem. 282, 7368–7375.PubMedCrossRefGoogle Scholar
  20. 20.
    Ingalls R.R., Rice P.A., Qureshi N., Takayama K., Lin J.S., Golenbock D.T. 1995. The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect. Immun. 63, 3125–3130.PubMedGoogle Scholar
  21. 21.
    Heine H., Muller-Loennies S., Brade L., Lindner B., Brade H. 2003. Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC. Eur. J. Biochem. 270, 440–450.PubMedCrossRefGoogle Scholar
  22. 22.
    Molestina R.E., Miller R.D., Lentsch A.B., Ramirez J.A., Summersgill J.T. 2000. Requirement for NF-kappaB in transcriptional activation of monocyte chemotactic protein 1 by Chlamydia pneumoniae in human endothelial cells. Infect. Immun. 68, 4282–4288.PubMedCrossRefGoogle Scholar
  23. 23.
    Lad S.P., Yang G., Scott D.A., Wang G., Nair P., Mathison J., Reddy V.S., Li E. 2007. Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-kappaB pathway of immune response. J. Bacteriol. 189, 6619–6625.PubMedCrossRefGoogle Scholar
  24. 24.
    Lad S.P., Li J., da Silva Correia J., Pan Q., Gadwal S., Ulevitch R.J., Li E. 2007. Cleavage of p65/RelA of the NF-kB pathway by Chlamydia. Proc. Natl. Acad. Sci. USA. 104, 2933–2938.PubMedCrossRefGoogle Scholar
  25. 24.
    Vandahl B.B., Birkelund S., Christiansen G. 2004. Genome and proteome analysis of Chlamydia. Proteomics. 4, 2831–2842.PubMedCrossRefGoogle Scholar
  26. 25.
    Janeway C.A., Jr. 2001. How the immune system works to protect the host from infection: A personal view. Proc. Natl. Acad. Sci. USA. 98, 7461–7468.PubMedCrossRefGoogle Scholar
  27. 26.
    Pulendran B., Ahmed R. 2006. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 124, 849–863.PubMedCrossRefGoogle Scholar
  28. 27.
    Holmgren J., Czerkinsky C. 2005. Mucosal immunity and vaccines. Nature Med. 11, S45–S53.PubMedCrossRefGoogle Scholar
  29. 28.
    Misaghi S., Balsara Z.R., Catic A., Spooner E., Ploegh H.L. Starnbach M.N. 2006. Chlamydia trachomatisderived deubiquitinating enzymes in mammalian cells during infection. Mol. Microbiol. 61, 142–150.PubMedCrossRefGoogle Scholar
  30. 29.
    Le Negrate G., Krieg A., Faustin B., Loeffler M., Godzik A., Krajewski S., Reed J.C. 2008. ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation. Cell. Microbiol. June 16. [Epub ahead of print]Google Scholar
  31. 30.
    Wyrick P.B., Choong J., Davis C.H., Knight S.T., Royal M.O., Maslow A.S., Bagnell C.R. 1989. Entry of Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57, 2378–2389.PubMedGoogle Scholar
  32. 31.
    Prain C.J., Pearce J.H. 1989. Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): Modulation of intracellular events and relationship with the endocytic mechanism. J. Gen. Microbiol. 135, 2107–2123.PubMedGoogle Scholar
  33. 32.
    Byrne G.I., Moulder J.W. 1978. Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells. Infect. Immun. 19, 598–606.PubMedGoogle Scholar
  34. 33.
    Ward M.E., Murray A. 1984. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: Mechanisms of endocytosis. J. Gen. Microbiol. 130, 1765–1780.PubMedGoogle Scholar
  35. 34.
    Fan T., Lu H., Hu H., Shi L., McClarty G.A., Nance D.M., Greenberg A.H., Zhong G. 1998. Inhibition of apoptosis in Chlamydia-infected cells: Blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187, 487–496.PubMedCrossRefGoogle Scholar
  36. 35.
    Carabeo R.A., Grieshaber S.S., Hasenkrug A., Dooley C., Hackstadt T. 2004. Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells. Traffic. 5, 418–425.PubMedCrossRefGoogle Scholar
  37. 36.
    Clifton D.R., Fields K.A., Grieshaber S.S., Dooley C.A., Fischer E.R., Mead D.J., Carabeo R.A., Hackstadt T. 2004. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc. Natl. Acad. Sci. USA. 101, 10166–10171.PubMedCrossRefGoogle Scholar
  38. 37.
    Backert S., Selbach M. 2005. Tyrosine-phosphorylated bacterial effector proteins: The enemies within. Trends Microbiol. 13, 476–484.PubMedCrossRefGoogle Scholar
  39. 38.
    Kenny B., DeVinney R., Stein M., Reinscheid D.J., Frey E.A., Finlay B.B. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell. 91, 511–520.PubMedCrossRefGoogle Scholar
  40. 39.
    Jewett T.J., Dooley C.A., Mead D.J., Hackstadt T. 2008. Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases. Biochem. Biophys. Res. Commun. 371, 339–344.PubMedCrossRefGoogle Scholar
  41. 40.
    Jewett T.J., Fischer E.R., Mead D.J., Hackstadt T. 2006. Chlamydial TARP is a bacterial nucleator of actin. Proc. Natl. Acad. Sci. USA. 103, 15599–15604.PubMedCrossRefGoogle Scholar
  42. 41.
    Lane B.J., Mutchler C., Al Khodor S., Grieshaber S.S., Carabeo R.A. 2008. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog. 4, e1000014.PubMedCrossRefGoogle Scholar
  43. 42.
    Elwell C.A., Ceesay A., Kim J.H., Kalman D., Engel J.N. 2008. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog. 4, e1000021.PubMedCrossRefGoogle Scholar
  44. 43.
    Wehrl W., Brinkmann V., Jungblut P.R., Meyer T.F., Szczepek A.J. 2004. From the inside out processing of the Chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Mol. Microbiol. 51, 319–334.PubMedCrossRefGoogle Scholar
  45. 45.
    Grimwood J., Stephens R.S. 1999. Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae. Microb. Comp. Genomics. 4, 187–201.PubMedGoogle Scholar
  46. 46.
    Henderson I.R., Lam A.C. 2001. Polymorphic proteins of Chlamydia spp. autotransporters beyond the Proteobacteria. Trends Microbiol. 9, 573–578.PubMedCrossRefGoogle Scholar
  47. 47.
    Henderson I.R., Navarro-Garcia F., Nataro J.P. 1998. The great escape: Structure and function of the autotransporter proteins. Trends Microbiol. 6, 370–378.PubMedCrossRefGoogle Scholar
  48. 48.
    Lindquist E., Stephens R. 1998. Proceedings of the Ninth International Symposium on Human Chlamydial Infection. Abstract Book. San Francisco, pp. 259–262.Google Scholar
  49. 49.
    Scidmore M.A., Fischer E.R., Hackstadt T. 2003. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect. Immun. 71, 973–984.PubMedCrossRefGoogle Scholar
  50. 50.
    Schramm N., Bagnell C.R., Wyrick P.B. 1996. Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells. Infect. Immun. 64, 1208–1214.PubMedGoogle Scholar
  51. 51.
    Fawaz F.S., van Ooij C., Homola E., Mutka S.C., Engel J.N. 1997. Infection with Chlamydia trachomatis alters tyrosine phosphorylation and/or localization of several host cell proteins including cortactin. Infect. Immun. 65, 5301–5308.PubMedGoogle Scholar
  52. 52.
    Majeed M. Kihlstrom E. 1991. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eukaryotic cells. Infect. Immun. 59, 4465–4472.PubMedGoogle Scholar
  53. 53.
    Clausen J.D., Christiansen G., Holst H.U., Birkelund S. 1997. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Mol. Microbiol. 25, 441–449.PubMedCrossRefGoogle Scholar
  54. 54.
    Schramm N., Wyrick P.B. 1995 Cytoskeletal requirements in Chlamydia trachomatis infection of host cells. Infect. Immun. 63, 324–332.PubMedGoogle Scholar
  55. 55.
    Grieshaber S.S., Grieshaber N.A., Hackstadt T. 2003. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J. Cell. Sci. 116, 37930–3802.CrossRefGoogle Scholar
  56. 56.
    Rzomp K.A., Scholtes L.D., Briggs B.J., Whittaker G.R., Scidmore M.A. 2003. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect. Immun. 71, 5855–5870.PubMedCrossRefGoogle Scholar
  57. 57.
    Rzomp K.A., Moorhead A.R., Scidmore M.A. 2006. The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect. Immun. 74, 5362–5373.PubMedCrossRefGoogle Scholar
  58. 58.
    Cortes C., Rzomp K.A., Tvinnereim A., Scidmore M.A., Wizel B. 2007. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect. Immun. 75, 5586–5596.PubMedCrossRefGoogle Scholar
  59. 59.
    Moorhead A.R., Rzomp K.A., Scidmore M.A. 2007. The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner. Infect. Immun. 75, 781–791.PubMedCrossRefGoogle Scholar
  60. 60.
    Majeed M., Gustafsson M., Kihlstrom E., Stendahl O. 1993. Roles of Ca21 and F-actin in intracellular aggregation of Chlamydia trachomatis in eukaryotic cells. Infect. Immun. 61, 1406–1414.PubMedGoogle Scholar
  61. 61.
    Majeed M., Ernst J.D., Magnusson K.-E., Kihlstrom E., Stendahl O. 1994. Selective translocation of annexins during intracellular redistribution of Chlamydia trachomatis in HeLa and McCoy cells. Infect. Immun. 62, 126–134.PubMedGoogle Scholar
  62. 62.
    Ridderhof J., Barnes R.C. 1989. Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis. Infect. Immun. 57, 3189–3193.PubMedGoogle Scholar
  63. 63.
    Delevoye C., Nilges M., Dautry-Varsat A., Subtil A. 2004. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: Oligomerization of IncA mediates interaction between facing membranes. J. Biol. Chem. 279, 46896–46906.PubMedCrossRefGoogle Scholar
  64. 64.
    Fields K.A., Fischer E., Hackstadt T. 2002. Inhibition of fusion of Chlamydia trachomatis inclusions at 32°C correlates with restricted export of IncA. Infect. Immun. 70, 3816–3823.PubMedCrossRefGoogle Scholar
  65. 65.
    Hackstadt T., Scidmore-Carlson M.A., Shaw E.I., Fischer E.R. 1999. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell. Microbiol. 1, 119–130.PubMedCrossRefGoogle Scholar
  66. 66.
    Suchland R.J., Rockey D.D., Bannantine J.P., Stamm W.E. 2000. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect. Immun. 68, 360–367.PubMedCrossRefGoogle Scholar
  67. 67.
    Rockey D.D., Heizen R.A., Hackstadt T. 1995. Cloning and characterization of a Chlamydia psittaci gene encoding for a protein localized in the inclusion membrane of infected cells. Mol. Microbiol. 15, 617–626.PubMedCrossRefGoogle Scholar
  68. 68.
    Rockey D.D., Grosenbach D., Hruby D.E., Peacock M.G., Heizen R.A., Hackstadt T. 1997. Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol. Microbiol. 24, 217–228.PubMedCrossRefGoogle Scholar
  69. 69.
    Delevoye C., Nilges M., Dehoux P., Paumet F., Perrinet S., Dautry-Varsat A., Subtil A. 2008. SNARE protein mimicry by an intracellular bacterium. PLoS Pathog. 4, e1000022.PubMedCrossRefGoogle Scholar
  70. 70.
    Suchland R.J., Rockey D.D., Weeks S.K., Alzhanov D.T., Stamm W.E. 2005. Development of secondary inclusions in cells infected by Chlamydia trachomatis. Infect. Immun. 73, 3954–3962.PubMedCrossRefGoogle Scholar
  71. 71.
    Alzhanov D., Barnes J., Hruby D.E., Rockey D.D. 2004. Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA. BMC Microbiol. 4, 24.PubMedCrossRefGoogle Scholar
  72. 72.
    Bannantine J.P., Griffiths R.S., Viratyosin W., Brown W.J., Rockey D.D. 2000. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell. Microbiol. 2, 35–47.PubMedCrossRefGoogle Scholar
  73. 73.
    Toh H., Miura K., Shirai M., Hattori M. 2003. In silico inference of inclusion membrane protein family in obligate intracellular parasites Chlamydiae. DNA Res. 10, 9–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Scidmore M.A., Hackstadt T. 2001. Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol. Microbiol. 39, 1638–1650.PubMedCrossRefGoogle Scholar
  75. 75.
    Verbeke P., Welter-Stahl L., Ying S., Hansen J., Hacker G., Darville T., Ojcius D.M. 2006. Recruitment of Bad by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2, e45.PubMedCrossRefGoogle Scholar
  76. 76.
    Verma A., Maurelli A.T. 2003. Identification of two eukaryote-like serine/threonine kinases encoded by Chlamydia trachomatis serovar L2 and characterization of interacting partners of Pkn1. Infect. Immun. 71, 5772–5784.PubMedCrossRefGoogle Scholar
  77. 77.
    O’Connell C.M., Ionova I.A., Quayle A.J., Visintin A., Ingalls R.R. 2006. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J. Biol. Chem. 281, 1652–1659.PubMedCrossRefGoogle Scholar
  78. 78.
    Dong F., Su H., Huang Y., Zhong Y., Zhong G. 2004. Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect. Immun. 72, 3863–3868.PubMedCrossRefGoogle Scholar
  79. 79.
    Kumar Y., Valdivia R.H. 2008. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell. Host. Microbe. 4, 159–169.PubMedCrossRefGoogle Scholar
  80. 80.
    Stephens R.S., Kalman S., Lammel C., et al. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science. 282, 754–759.PubMedCrossRefGoogle Scholar
  81. 81.
    Hackstadt T., Fischer E.R., Scidmore M.A., Rockey D.D., Heinzen R.A. 1997. Origins and functions of the chlamydial inclusion. Trends Microbiol. 5, 288–293.PubMedCrossRefGoogle Scholar
  82. 82.
    Moore E.R., Fischer E.R., Mead D.J., Hackstadt T. 2008. The chlamydial inclusion preferentially intercepts basolaterally directed sphingomyelin-containing exocytic vacuoles. Traffic. Sep 6. [Epub ahead of print].Google Scholar
  83. 83.
    Wylie J.L., Hatch G.M., McClarty G. 1997. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179, 7233–7242.PubMedGoogle Scholar
  84. 84.
    Cocchiaro J.L., Kumar Y., Fischer E.R., Hackstadt T., Valdivia R.H. 2008. The wholesale transport of LDs into the lumen of a parasitophorous vacuole. Proc. Natl. Acad. Sci. USA. 105, 9379–9384.PubMedCrossRefGoogle Scholar
  85. 85.
    Kumar Y., Cocchiaro J., Valdivia R.H. 2006. The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr. Biol. 16, 1646–1651.CrossRefGoogle Scholar
  86. 86.
    Beatty W.L., Morrison R.P., Byrne G.I. 1994. Persistent Chlamydiae: From cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58, 686–699.PubMedGoogle Scholar
  87. 87.
    Raulston J.E. 1997. Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for ironregulated chlamydial proteins. Infect. Immun. 65, 4539–4547.PubMedGoogle Scholar
  88. 88.
    Heizen R.A., Hackstadt T. 1997. The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low molecular weight compounds. Infect. Immun. 65, 1088–1094.Google Scholar
  89. 89.
    Beatty W.L. 2006. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J. Cell. Sci. 119, 350–359.PubMedCrossRefGoogle Scholar
  90. 90.
    Beatty W.L. 2008. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect. Immun. 76, 2872–2881.PubMedCrossRefGoogle Scholar
  91. 91.
    Iliffe-Lee E.R., McClarty G. 1999. Glucose metabolism in Chlamydia trachomatis: The “energy parasite” hypothesis revisited. Mol. Microbiol. 33, 177–187.PubMedCrossRefGoogle Scholar
  92. 92.
    Wyllie S., Ashley R.H., Longbottom D., Herring A.J. 1998. The major outer membrane protein of Chlamydia psittaci functions as a porin-like ion channel. Infect. Immun. 66, 5202–5209.PubMedGoogle Scholar
  93. 93.
    Willis S.N., Adams J.M. 2005. Life in the balance: How BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17, 617–625.PubMedCrossRefGoogle Scholar
  94. 94.
    Lanave C., Santamaria M., Saccone C. 2004. Comparative genomics: The evolutionary history of the Bcl-2 family. Gene. 333, 71–79.PubMedCrossRefGoogle Scholar
  95. 95.
    Nechushtan A., Smith C.L., Lamensdorf I., Yoon S.H., Youle R.J. 2001. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell Biol. 153, 1265–1276.PubMedCrossRefGoogle Scholar
  96. 96.
    Bouillet P., Strasser A. 2002. Bax and Bak: Back-bone of T cell death. J. Cell Sci. 115, 1567–1574.PubMedGoogle Scholar
  97. 97.
    Dean D., Powers V.C. 2001. Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect. Immun. 69, 2442–2447.PubMedCrossRefGoogle Scholar
  98. 98.
    Rajalingam K., Sharma M., Lohmann C., Oswald M., Thieck O., Froelich C.J., Rudel T. 2008. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells. PLoS ONE. 3, e3102.PubMedCrossRefGoogle Scholar
  99. 99.
    Rajalingam K., Sharma M., Paland N., Hurwitz R., Thieck O., Oswald M., Machuy N., Rudel T. 2006. IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathogens. 2, e114.PubMedCrossRefGoogle Scholar
  100. 100.
    Ying S., Christian J.G., Paschen S.A., Hacker G. 2008. Chlamydia trachomatis can protect host cells against apoptosis in the absence of cellular Inhibitor of apoptosis proteins and Mcl-1. Microbes Infect. 10, 97–101.PubMedCrossRefGoogle Scholar
  101. 101.
    Fischer S.F., Vier J., Kirschnek S., Klos A., Hess S., Ying S., Hacker G. 2004. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J. Exp. Med. 200, 905–916.PubMedCrossRefGoogle Scholar
  102. 102.
    Dong F., Pirbhai M., Xiao Y., Zhong Y., Wu Y., Zhong G. 2005. Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis-infected cells. Infect. Immun. 73, 1861–1864.PubMedCrossRefGoogle Scholar
  103. 103.
    Ying S., Seiffert B.M., Hacker G., Fischer S.F. 2005. Broad degradation of proapoptotic proteins with the conserved Bcl-2 homology domain 3 during infection with Chlamydia trachomatis. Infect. Immun. 73, 1399–1403.PubMedCrossRefGoogle Scholar
  104. 104.
    Pirbhai M., Dong F., Zhong Y., Pan K.Z., Zhong G. 2006. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J. Biol. Chem. 281, 31495–31501.PubMedCrossRefGoogle Scholar
  105. 105.
    Tse S.M., Mason D., Botelho R.J., Chiu B., Reyland M., Hanada K., Inman R.D., Grinstein S. 2005. Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: Possible role in the inhibition of host cell apoptosis. J. Biol. Chem. 280, 25210–25215.PubMedCrossRefGoogle Scholar
  106. 106.
    Stenner-Liewen F., Liewen H., Zapata J.M., Pawlowski K., Godzik A., Reed J.C. 2002. CADD, a Chlamydia protein that interacts with death receptors. J. Biol. Chem. 277, 9633–9636.PubMedCrossRefGoogle Scholar
  107. 107.
    Horoschak K.D., Moulder J.W. 1978. Division of single host cells after infection with chlamydiae. Infect. Immun. 19, 281–286.PubMedGoogle Scholar
  108. 108.
    Greene W., Zhong G. 2003. Inhibition of host cell cytokinesis by Chlamydia trachomatis infection. J. Infect. 47, 45–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Grieshaber S.S., Grieshaber N.A., Miller N., Hackstadt T. 2006. Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic. 7, 940–949.PubMedCrossRefGoogle Scholar
  110. 110.
    Balsara Z.R., Misaghi S., Lafave J.N., Starnbach M.N. 2006. Chlamydia trachomatis infection induces cleavage of the mitotic cyclin B1. Infect. Immun. 74, 5602–5608.PubMedCrossRefGoogle Scholar
  111. 111.
    Chellas-Gery B., Linton C.N., Fields K.A. 2007. Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model. Cell. Microbiol. 9, 2417–2430.PubMedCrossRefGoogle Scholar
  112. 112.
    Paland N., Bohme L., Gurumurthy R.K., Maurer A., Szczepek A.J., Rudel T. 2008. Reduced display of tumor necrosis factor receptor I at the host cell surface supports infection with Chlamydia trachomatis. J. Biol. Chem. 283, 6438–6448.PubMedCrossRefGoogle Scholar
  113. 113.
    Shirey K.A., Carlin J.M. 2006. Chlamydiae modulate gamma interferon, interleukin-1 beta, and tumor necrosis factor alpha receptor expression in HeLa cells. Infect. Immun. 74, 2482–2486.PubMedCrossRefGoogle Scholar
  114. 114.
    Cottin V., Doan J.E., Riches D.W. 2002. Restricted localization of the TNF receptor CD120a to lipid rafts: A novel role for the death domain. J. Immunol. 168, 4095–4102.PubMedGoogle Scholar
  115. 115.
    Jia T.J., Liu D.W., Luo J.H., Zhong G.M. 2007. Localization of the hypothetical protein CT249 in the Chlamydia trachomatis inclusion membrane. Wei Sheng Wu Xue Bao (In Chinese). 47, 645–648.PubMedGoogle Scholar
  116. 116.
    Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.PubMedCrossRefGoogle Scholar
  117. 117.
    Carabeo R.A., Mead D.J., Hackstadt T. 2003. Golgidependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc. Natl. Acad. Sci. USA. 100, 6771–6776.PubMedCrossRefGoogle Scholar
  118. 118.
    Su H., McClarty G., Dong F., Hatch G.M., Pan Z.K., Zhong G. 2004. Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J. Biol. Chem. 279, 9409–9416.PubMedCrossRefGoogle Scholar
  119. 119.
    Haralambieva I.H., Iankov I. D., Ivanova P.V., Mitev V., Mitov I.G. 2004. Chlamydophila pneumoniae induces p44/p42 mitogen-activated protein kinase activation in human fibroblasts through Toll-like receptor 4. J. Med. Microbiol. 53, 1187–1193.PubMedCrossRefGoogle Scholar
  120. 120.
    Moss M.L., Jin S.L., Becherer J.D., et al. 1997. Structural features and biochemical properties of TNF-alpha converting enzyme (TACE). J. Neuroimmunol. 72, 127–129.PubMedCrossRefGoogle Scholar
  121. 121.
    Soond S.M., Everson B., Riches D.W., Murphy G. 2005. ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. J. Cell. Sci. 118, 2371–2380.PubMedCrossRefGoogle Scholar
  122. 122.
    Tellier E., Canault M., Rebsomen L., Bonardo B., Juhan-Vague I., Nalbone G., Peiretti F. 2006. Exp. Cell Res. 312, 3969–3980.PubMedCrossRefGoogle Scholar
  123. 123.
    Morrison T.E., Mauser A., Klingelhutz A., Kenney S.C. 2004. Epstein-Barr virus immediate-early protein BZLF1 inhibits tumor necrosis factor alpha-induced signaling and apoptosis by downregulating tumor necrosis factor receptor 1. J. Virol. 78, 544–549.PubMedCrossRefGoogle Scholar
  124. 124.
    Baillie J., Sahlender D.A., Sinclair J.H. 2003. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF-alpha receptor. J. Virol. 77, 7007–7016.PubMedCrossRefGoogle Scholar
  125. 125.
    Raqib R., Lindberg A.A., Bjork L., Bardhan P.K., Wretlind B., Andersson U., Andersson J. 1995. Downregulation of gamma interferon, tumor necrosis factor type I, interleukin 1 (IL-1) type I, IL-3, IL-4, and transforming growth factor beta type I receptors at the local site during the acute phase of Shigella infection. Infect. Immun. 63, 3079–3087.PubMedGoogle Scholar
  126. 126.
    Tao S., Kaul R., Wenman W.M. 1991. Identification and nucleotide sequence of a developmentally regulated gene encoding a eukaryotic histone H1-like protein from Chlamydia trachomatis. J. Bacteriol. 173, 2818–2822.PubMedGoogle Scholar
  127. 127.
    Barry C.E. III, Brickman T.J., Hackstadt T. 1992. Nucleoid condensation in Escherichia coli that express a chlamydial histone homologue. Science. 256, 377–379.PubMedCrossRefGoogle Scholar
  128. 128.
    Wyrick P.B. 2000. Intracellular survival by Chlamydia. Cell. Microbiol. 2, 275–282.PubMedCrossRefGoogle Scholar
  129. 129.
    Hueck C.J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433.PubMedGoogle Scholar
  130. 130.
    Fields K.A., Hackstadt T. 2000. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 38, 1048–1060.PubMedCrossRefGoogle Scholar
  131. 131.
    Fields K.A., Fischer E.R., Mead D.J., Hackstadt T. 2005. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates. J. Bacteriol. 187, 6466–6478.PubMedCrossRefGoogle Scholar
  132. 132.
    Ho T.D., Starnbach M.N. 2005. The Salmonella enterica serovar typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells. Infect. Immun. 73, 905–911.PubMedCrossRefGoogle Scholar
  133. 133.
    Subtil A., Parsot C., Dautry-Varsat A. 2001. Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Mol. Microbiol. 39, 792–800.PubMedCrossRefGoogle Scholar
  134. 134.
    Fields K.A., Mead D.J., Dooley C.A., Hackstadt T. 2003. Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol. Microbiol. 48, 671–683.PubMedCrossRefGoogle Scholar
  135. 135.
    Subtil A., Delevoye C., Balana M.E., Tastevin L., Perrinet S., Dautry-Varsat A. 2005. A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol. Microbiol. 56, 1636–1647.PubMedCrossRefGoogle Scholar
  136. 136.
    Belland R.J., Zhong G., Crane D.D., Hogan D., Sturdevant D., Sharma J., Beatty W.L., Caldwell H.D. 2003. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA. 100, 8478–8483.PubMedCrossRefGoogle Scholar
  137. 137.
    Slepenkin A., Motin V., de la Maza L.M., Peterson E.M. 2003. Temporal expression of type III secretion genes of Chlamydia pneumoniae. Infect. Immun. 71, 2555–2562.PubMedCrossRefGoogle Scholar
  138. 138.
    Ferracci F., Schubot F.D., Waugh D.S., Plano G.V. 2005. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol. Microbiol. 57, 970–987.PubMedCrossRefGoogle Scholar
  139. 139.
    Tanzer R.J., Hatch T.P. 2001. Characterization of outer membrane proteins in Chlamydia trachomatis LGV serovar L2. J. Bacteriol. 183, 2686–2690.PubMedCrossRefGoogle Scholar
  140. 140.
    Betts H.J., Twiggs L.E., Sal M.S., Wyrick P.B., Fields K.A. 2008. Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis. J. Bacteriol. 190, 1680–1690.PubMedCrossRefGoogle Scholar
  141. 141.
    Peters J., Wilson D.P., Myers G., Timms P., Bavoil P.M. 2007. Type III secretion a la Chlamydia. Trends Microbiol. 15, 241–251.PubMedCrossRefGoogle Scholar
  142. 142.
    Johnson D.L., Stone C.B., Mahony J.B. 2008. Interactions between CdsD, CdsQ, and CdsL, three putative Chlamydophila pneumoniae type III secretion proteins. J. Bacteriol. 190, 2972–2980.PubMedCrossRefGoogle Scholar
  143. 143.
    Johnson D.L., Mahony J.B. 2007. Chlamydophila pneumoniae PknD exhibits dual amino acid specificity and phosphorylates Cpn0712, a putative type III secretion YscD homolog. J. Bacteriol. 189, 7549–7555.PubMedCrossRefGoogle Scholar
  144. 144.
    Valdivia R.H. 2008. Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr. Opin. Microbiol. 11, 53–59.PubMedCrossRefGoogle Scholar
  145. 145.
    Al-Daraji W.I., Smith J.H. 2009. Infection and cervical neoplasia: Facts and fiction. Int. J. Clin. Exp. Pathol. 2, 48–64.PubMedGoogle Scholar
  146. 146.
    Jorgensen I., Valdivia R.H. 2008. Pmp-like proteins Pls1 and Pls2 are secreted into the lumen of the Chlamydia trachomatis inclusion. Infect. Immun. 76, 3940–3950.PubMedCrossRefGoogle Scholar
  147. 147.
    Scidmore-Carlson M.A., Shaw E.I., Dooley C.A. Fischer E.R., Hackstadt T. 1999. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins. Mol. Microbiol. 33, 753–765.PubMedCrossRefGoogle Scholar
  148. 148.
    Sharma J., Zhong Y., Dong F., Piper J.M., Wang G., Zhong G. 2006. Profiling of human antibody responses to Chlamydia trachomatis urogenital tract infection using microplates arrayed with 156 chlamydial fusion proteins. Infect. Immun. 74, 1490–1499.PubMedCrossRefGoogle Scholar
  149. 149.
    Bannantine J.P., Rockey D.D., Hackstadt T. 1998. Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane. Mol. Microbiol. 28, 1017–1026.PubMedCrossRefGoogle Scholar
  150. 150.
    Sisko J.L., Spaeth K., Kumar Y., Valdivia R.H. 2006. Multifunctional analysis of Chlamydia-specific genes in a yeast expression system. Mol. Microbiol. 60, 51–66.PubMedCrossRefGoogle Scholar
  151. 151.
    Chen C., Chen D., Sharma J., Cheng W., Zhong Y., Liu K., Jensen J., Shain R., Arulanandam B., Zhong G. 2006. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis. Infect. Immun. 74, 4826–4840.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. S. Karyagina
    • 1
    • 2
    Email author
  • A. V. Alexeevsky
    • 3
    • 4
  • S. A. Spirin
    • 3
    • 4
  • N. A. Zigangirova
    • 1
  • A. L. Gintsburg
    • 1
  1. 1.Gamaleya Institute of Epidemiology and MicrobiologyRussian Academy of Medical SciencesMoscowRussia
  2. 2.All-Russia Institute of Agricultural BiotechnologyRussian Academy of Agricultural SciencesMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  4. 4.Institute of System StudiesRussian Academy of SciencesMoscowRussia

Personalised recommendations