Molecular Biology

, 43:881 | Cite as

Reconstructing the evolution of genes along the species tree

  • K. Yu. Gorbunov
  • V. A. Lyubetsky


A model and algorithm are proposed to infer the evolution of a gene family described by the corresponding gene tree, with respect to the species evolution described by the corresponding species tree. The model describes the evolution using the new concept of a nested tree. The algorithm performance is illustrated by the example of several orthologous protein groups. The considered evolutionary events are speciation, gene duplication and loss, and horizontal gene transfer retaining the original gene copy. The transfer event with the loss of the original gene copy is considered as a combination of gene transfer and loss. The model maps each evolutionary event onto the species phylogeny.

Key words

evolution along species tree gene tree nesting into species tree gene duplication gene loss horizontal gene transfer 


  1. 1.
    Mathematics of Evolution and Phylogeny. 2005. Ed. Gascuel O. Oxford, MA: Oxford Univ. Press.Google Scholar
  2. 2.
  3. 3.
    Lyubetsky V.A., Gorbunov K.Yu., Rusin L.Y., V’yugin V.V. 2006. Algorithms to reconstruct evolutionary events at molecular level and infer species phylogeny. In: Bioinformatics of Genome Regulation and Structure II. Springer Sci. & Business Media, Inc., pp. 189–204.Google Scholar
  4. 4.
    Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford, MA: Oxford Univ. Press.Google Scholar
  5. 5.
    Gascuel O., Steel M. 2007. Reconstructing Evolution: New Mathematical and Computational Advances. Oxford, MA: Oxford Univ. Press.Google Scholar
  6. 6.
    Page R.D.M., Holmes E.C. 1998. Molecular Evolution: A Phylogenetic Approach. Oxford: Blackwell.Google Scholar
  7. 7.
    Wolf Y., Rogozin I., Grishin N., Tatusov R., Koonin E. 2001. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1, 1–22.CrossRefGoogle Scholar
  8. 8.
    Durand D., Haldorsson B.V., Vernot B. 2006. A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 13, 320–335.PubMedCrossRefGoogle Scholar
  9. 9.
    Hallett M.T., Lagergren J. 2000. New algorithms for the duplication-loss model. Proc. Fourth Annu. Internat. Conf. Comput. Mol. Biol. RECOMB 2000 ACM, pp. 138–146.Google Scholar
  10. 10.
    Chauve C., Doyon J.-P., El-Mabrouk N. 2007. Inferring a duplication, speciation and loss history from a gene tree (extended abstract). In: Comparative Genomics, RECOMB 2007 International Workshop. Eds Tesler G., Durand D. Springer, 4751 of LNCS, pp. 45–57.Google Scholar
  11. 11.
    Willson S. 2004. Constructing rooted supertrees using distances. Bull. Math. Biol. 66, 1755–1783.PubMedCrossRefGoogle Scholar
  12. 12.
    Guigo R., Muchnik I., Smith T.F. 1996. Reconstruction of ancient molecular phylogeny. Mol. Phylogenet. Evol. 6, 189–213.PubMedCrossRefGoogle Scholar
  13. 13.
    Eulenstein O., Mirkin B., Vingron M. 1998. Duplication-based measures of difference between gene and species trees. J. Comput. Biol. 5, 135–148.PubMedCrossRefGoogle Scholar
  14. 14.
    Novozhilov A.S., Karev G.P., Koonin E.V. 2005. Mathematical modeling of evolution of horizontally transferred genes. Mol. Biol. Evol. 22, 1721–1732.PubMedCrossRefGoogle Scholar
  15. 15.
    Gorbunov K.Yu., Lyubetsky V.A. 2005. Identification of ancestral genes that introduce incongruence between protein- and species trees. Mol. Biol. 39, 847–858.CrossRefGoogle Scholar
  16. 16.
    Gorbunov K.Yu., Lyubetsky V.A. 2007. Reconstruction of ancestral regulatory signals along a transcription factor tree. Mol. Biol. 41, 918–925.CrossRefGoogle Scholar
  17. 17.
    Smith M.W., Feng D.F., Doolitte R.F. 1992. Evolution by acquisition: The case for horizontal gene transfers. Trends Biochem. Sci. 17, 489–493.PubMedCrossRefGoogle Scholar
  18. 18.
    Page R.D.M., Charleston M.A. 1997. Reconciled trees and incongruent gene and species trees. In: Mathematical Hierarchies in Biology, vol. 37. Eds. Mirkin B., McMorris F.R., Roberts F.S. Rzhetsky A. Am. Math. Soc., pp. 1–14.Google Scholar
  19. 19.
    Lyubetsky V.A., Zhizhina E.A., Rubanov L.I. 2008. The Gobbsean approach to the problem of evolution of gene expression regulatory signal. Probl. Peredachi Inform. 44, 52–71.Google Scholar
  20. 20.
    Mirkin B.G., Fenner T.I., Galperin M.Y., Koonin E.V. 2003. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol. 3, 1–34.CrossRefGoogle Scholar
  21. 21.
    Johnston A.W., Todd J.D., Curson A.R., Lei S., Nikolaidou-Katsaridou N., Gelfand M.S., Rodionov D.A. 2007. Living without Fur: The subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals. 20, 501–511.PubMedCrossRefGoogle Scholar
  22. 22.
    Gerasimova A.V., Gelfand M.S. 2005. Evolution of the NadR regulon in Enterobacteriaceae. J. Bioinform. Comput. Biol. 3, 1007–1019.PubMedCrossRefGoogle Scholar
  23. 23.
    Seliverstov A.V., Putzer H., Gelfand M.S., Lyubetsky V.A. 2005. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria. BMC Microbiol. 5, 1–14.CrossRefGoogle Scholar
  24. 24.
    Vitreschak A.G., Mironov A.A., Lyubetsky V.A., Gelfand M.S. 2008. Functional and evolutionary analysis of the T-box regulon in bacteria. RNA. 14, 717–735.PubMedCrossRefGoogle Scholar
  25. 25.
    Gorbunov K.Yu., Lyubetskaya E.V., Asarin E.A., Lyubetsky V.A. 2009. Modeling evolution of the bacterial regulatory signals involving secondary structure. Mol. Biol. 43, 527–541.CrossRefGoogle Scholar
  26. 26.
    Zghidi W., Merendino L., Cottet A., Mache R., Lerbs-Mache S. 2007. Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids. Nucleic Acids Res. 35, 455–464.PubMedCrossRefGoogle Scholar
  27. 27.
    Favory J.-J., Kobayshi M., Tanaka K., Peltier G., Kreis M., Valay J.-G., Lerbs-Mache S. 2005. Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acids Res. 33, 5991–5999.PubMedCrossRefGoogle Scholar
  28. 28.
    Seliverstov A.V., Lyubetsky V.A. 2006. Translation regulation of intron containing genes in chloroplasts. J. Bioinform. Comput. Biol. 4, 783–793.PubMedCrossRefGoogle Scholar
  29. 29.
    Lyubetsky V.A., V’yugin V.V. 2003. Methods of horizontal gene transfer determination using phylogenetic data. In Silico Biol. 3, 17–31.PubMedGoogle Scholar
  30. 30.
    V’yugin V.V., Gelfand M.S., Lyubetsky V.A. 2003. Identification of horizontal gene transfer from phylogenetic gene trees. Mol. Biol. 37, 673–687.Google Scholar
  31. 31.
    V’yugin V.V., Gelfand M.S., Lyubetsky V.A. 2002. Tree reconciliation: Reconstruction of species phylogeny by phylogenetic gene trees. Mol. Biol. 36, 807–816.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations