Molecular Biology

, Volume 43, Issue 4, pp 552–556 | Cite as

Analysis of the 5′-leader regions of several plastid genes in protozoa of the phylum apicomplexa and red algae

  • T. A. Sadovskaya
  • A. V. Seliverstov
Genomics. Transcriptomics. Proteomics


Apicomplexan parasites contain so-called apicoplasts, which are similar to chloroplasts of red algae. Multiple alignments of the 5′-leader regions of plastid-encoded genes revealed several conserved noncoding regions in parasites as well as in red algae. The regions were assumed to be sites for RNA interactions with regulatory proteins. Conserved sites were found upstream of ycf24, which is required for [Fe-S] cluster development, and several other genes. In particular, a simultaneous regulation was predicted for ycf24, rps4, and rpo B in Toxoplasma gondii. The prediction agreed with the known data that apicoplasts are only required for a short time, but confer pathogenicity on T. gondii. Another site was predicted upstream of rpo B, which encodes the β subunit of RNA polymerase, in red algae Porphyra spp. and parasites Eimeria tenella and Theileria parva.

Key words

gene regulation ycf24 rpoplastids comparative genomics Apicomplexa algae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zerges W. 2000. Translation in chloroplasts. Biochimie. 82, 583–601.PubMedCrossRefGoogle Scholar
  2. 2.
    Nickelsen J. 2003. Chloroplast RNA-binding proteins. Curr. Genet. 43, 392–399.PubMedCrossRefGoogle Scholar
  3. 3.
    Seliverstov A.V., Lyubetsky V.A. 2006. Translation regulation of intron containing genes in chloroplasts. J. Bioinformat. Comput. Biol. 4, 783–793.CrossRefGoogle Scholar
  4. 4.
    Lemieux C., Otis C., Turmel M. 2007. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biology. 5, 1–17.CrossRefGoogle Scholar
  5. 5.
    Balashov Yu.S. 1998. Iksodovye kleshchi — parazity i perenoschiki infektsii (Ixodid Ticks: Parasites and Infection Vectors), St. Petersburg: Nauka.Google Scholar
  6. 6.
    Beyer T.V. 1992. Opportunistic infections of protozoan nature. Tsitologiya. 34, 26–27.Google Scholar
  7. 7.
    Brayton K.A., Lau A.O.T., Herndon D.R., et al. 2007. Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathogens. 3, e148.CrossRefGoogle Scholar
  8. 8.
    Zhu G., Marchewka M.J., Keithly J.S. 2000. Cryptosporidium parvum appears to lack a plastid genome. Microbiology. 146, 315–321.PubMedGoogle Scholar
  9. 9.
    Rangachari K., Davis C.T., Eccleston J.F., Hirst E.M.A., Saldanha J.W., Strath M., Wilson R.J.M. 2002. SufC hydrolyzes ATP and interacts with SufB from Thermotoga maritima. FEBS Letters. 514, 225–228.PubMedCrossRefGoogle Scholar
  10. 10.
    Eccleston J.F., Petrovic A., Davis C.T., Rangachari K., Wilson R.J.M. (Iain). 2006. The kinetic mechanism of the SufC ATPase. J. Biol. Chem. 281, 8371–8378.PubMedCrossRefGoogle Scholar
  11. 11.
    Vollmer M., Thomsen N., Wiek S., Seeber F. 2001. Apicomplexan parasites possess distinct nuclear-encoded, but Apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J. Biol. Chem. 276, 5483–5490.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomsen-Zieger N., Schachtner J., Seeber F. 2003. Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Letters. 547, 80–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Muro-Pastor M.I., Florencio F.J. 2003. Regulation of ammonium assimilation in cyanobacteria. Plant Physiol. Biochem. 41, 595–603.CrossRefGoogle Scholar
  14. 14.
    Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.PubMedCrossRefGoogle Scholar
  15. 15.
    Xu X.M., Adams S., Chua N.-H., Moller S.G. 2005. AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J. Biol. Chem. 280, 6648–6654.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilson R.J.M. (Iain), Rangachari K., Saldanha J.W., Rickman L., Buxton R.S., Eccleston J.F. 2003. Parasite plastids: Maintenance and functions. Phil. Trans. R. Soc. Lond. B. 358, 155–164.Google Scholar
  17. 17.
    Mazumdar J., Wilson E.H., Masek K., Hunter C.A., Striepen B. 2006. Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc. Nat. Acad. Sci. USA. 103, 13192–13197.PubMedCrossRefGoogle Scholar
  18. 18.
    Fleige T., Fischer K., Ferguson D.J.P., Gross U., Bohne W. 2007. Carbohydrate metabolism in the Toxoplasma gondii Apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eucaryotic Cell. 6, 984–996.CrossRefGoogle Scholar
  19. 19.
    Passador L., Linn T. 1992. An internal region of rpoB is required for autogenous translational regulation of the subunit of Escherichia coli RNA polymerase. J. Bacteriol. 174, 7174–7179.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Skryabin State Academy of Veterinary Medicine and BiotechnologyMoscowRussia
  2. 2.Kharkevich Institute of Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations