Molecular Biology

, Volume 43, Issue 3, pp 485–499 | Cite as

Modeling evolution of the bacterial regulatory signals involving secondary structure

  • K. Yu. Gorbunov
  • E. V. Lyubetskaya
  • E. A. Asarin
  • V. A. Lyubetsky
Mathematical and System Biology


An algorithm for modeling the evolution of the regulatory signals involving the interaction with RNA secondary structure is proposed. The algorithm implies that the species phylogenetic tree is known and is based on the assumption that the considered signals have a conserved secondary structure. The input data are the extant primary structure of a signal for all leaves of the phylogenetic tree; the algorithm computes the signal primary and secondary structures at all the nodes. Concurrently, the algorithm constructs a multiple alignment of the extant (in leaves) sites of a regulatory signal taking into account its secondary structure. The results of successful testing of the algorithm for three main types of attenuation regulation in bacteria—classic attenuation (threonine and leucine biosyntheses in Gammaproteobacteria), T-box (in Actinobacteria), and RFN-mediated (in Eubacteria) regulations—are described.

Key words

evolutionary scenario regulatory signal evolution along a tree species tree secondary structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford: Oxford Univ. Press.Google Scholar
  2. 2.
    Gascuel O., Steel M. 2007. Reconstructing Evolution: New Mathematical and Computational Advances. Oxford: Oxford Univ. Press.Google Scholar
  3. 3.
    Page R.D.M., Holmes E.C. 1998. Molecular Evolution: A Phylogenetic Approach. Oxford: Blackwell Publishing.Google Scholar
  4. 4.
    Wolf Y., Rogozin I., Grishin N., Tatusov R., Koonin E. 2001. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1, 1–22.CrossRefGoogle Scholar
  5. 5.
    Durand D., Haldorsson B.V., Vernot B. 2006. A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 13, 320–335.PubMedCrossRefGoogle Scholar
  6. 6.
    Gascuel O. (Ed.). 2004. Mathematics of Evolution and Phylogeny. Oxford: Oxford Univ. Press.Google Scholar
  7. 7.
    Felsenstein J. 2004. Inferring phylogenies. Sunderland, MA: Sinauer Assoc.Google Scholar
  8. 8.
    Nakhleh L., Warnov T., Linder C.R. 2004. Reconstructing reticulate evolution in species: Theory and practice. In: Proc 8th Annual Conference on Research in Computational Molecular Biology. ACM, pp. 337–346.Google Scholar
  9. 9.
    Mirkin B.G., Fenner T.I., Galperin M.Y., Koonin E.V. 2003. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol. 3, 1–34.CrossRefGoogle Scholar
  10. 10.
    Guigo R., Muchnik I., Smith T. 1996. Reconstruction of ancient molecular phylogeny. Mol. Phylog. Evol. 6, 189–213.CrossRefGoogle Scholar
  11. 11.
    Page R.D.M., Charlstone M.A. 1997. From gene to organismal phylogeny: Reconciled trees and gene tree/species tree problem. Mol. Phylog. Evol. 7, 231–240.CrossRefGoogle Scholar
  12. 12.
    Page R.D.M. 1998. GeneTree: Comparing gene and species phylogenies using reconciled trees. Bioinformatics. 14, 819–820.PubMedCrossRefGoogle Scholar
  13. 13.
    Zmasek C.M., Eddy S.R. 2001. A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics. 17, 821–828.PubMedCrossRefGoogle Scholar
  14. 14.
    Chauve C., Doyon J.-P., El-Mabrouk N. 2007. Inferring a duplication, speciation and loss history from a gene tree (extended abstract). In: Comparative Genomics, RECOMB 2007 International Workshop. Eds. Tesler G., Durand D., LNCS (LNBI), vol. 4751, Heidelberg: Springer, pp. 45–57.Google Scholar
  15. 15.
    Elias I., Tuller T. 2007. Reconstruction of ancestral genomic sequences using likelihood. J. Comput. Biol. 14, 216–237.PubMedCrossRefGoogle Scholar
  16. 16.
    Hudek A.K., Brown D.G. 2005. Ancestral sequence alignment under optimal conditions. BMC Bioinformatics. 6, 1–14.CrossRefGoogle Scholar
  17. 17.
    Hallett M.T., Lagergren J. 2000. New algorithms for the duplication-loss model. In: Proc. 4th Annual International Conference on Computational Molecular Biology, RECOMB 2000. ACM, pp. 138–146.Google Scholar
  18. 18.
    Berglung A.-C., Lagergren J., Sennblad B. 2004. Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: Proc 8th Annual International Conference on Research in Computational Molecular Biology, RECOMB. Eds Bourne P.E., Gusfield D. ACM, pp. 326–335.Google Scholar
  19. 19.
    Bonizzoni P., Della Vedova G., Dondi R. 2005. Reconciling a gene tree to a species tree under the duplication cost model. Theor. Comput. Sci. 347, 36–53.CrossRefGoogle Scholar
  20. 20.
    Gorecki P., Tiutyn J. 2006. DLS-trees: A model of evolutionary scenarios. Theor. Comput. Sci. 359, 378–399.CrossRefGoogle Scholar
  21. 21.
    Lyubetsky V.A., Gorbunov K.Yu., Rusin L.Y., V’yugin V.V. 2005. Algorithms to reconstruct evolutionary events at molecular level and infer species phylogeny. In: Bioinformatics of Genome Regulation and Structure II. Springer Science & Business Media, Inc., pp. 189–204.Google Scholar
  22. 22.
    Vitreschak A.G., Lyubetskaya E.V., Shirshin M.A., Gelfand M.S., Lyubetsky V.A. 2004. Attenuation regulation of amino acid biosynthetic operons in proteobacteria: Comparative genomics analysis. FEMS Microbiol. Lett. 234, 357–370.PubMedCrossRefGoogle Scholar
  23. 23.
    Gelfand M.S., Gerasimova A.V., Kotelnikova E.A., Laikova O.N., Makeev V.Y., Mironov A.A., Panina E.M., Ravcheev D.A., Rodionov D.A., Vitreschak A.G. 2005. Comparative genomics and evolution of bacterial regulatory systems. In: Bioinformatics of Genome Regulation and Structure II. Springer Science & Business Media, Inc., pp. 111–119.Google Scholar
  24. 24.
    Seliverstov A.V., Putzer H., Gelfand M.S., Lyubetsky V.A. 2005. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria. BMC Microbiol. 5, 1–14.CrossRefGoogle Scholar
  25. 25.
    Seliverstov A.V., Lyubetsky V.A. 2006. Translation regulation of intron containing genes in chloroplasts. J. Bioinform. Comp. Biol. 4, 783–793.CrossRefGoogle Scholar
  26. 26.
    Lyubetsky V.A., Pirogov S.A., Rubanov L.I., Seliverstov A.V. 2007. Modeling classic attenuation regulation of gene expression in bacteria. J. Bioinform. Comp. Biol. 5, 155–180.CrossRefGoogle Scholar
  27. 27.
    Vitreschak A.G., Mironov A.A., Lyubetsky V.A., Gelfand M.S. 2008. Comparative genomic analysis of T-box regulatory systems in bacteria. RNA. 14, 717–735.PubMedCrossRefGoogle Scholar
  28. 28.
    McAdams H.H., Srinivasan B., Arkin A.P. 2004. The evolution of genetic regulatory systems in bacteria. Nature Rev. Genet. 5, 169–178.CrossRefGoogle Scholar
  29. 29.
    Savill N.J., Hoyle D.C., Higgs P.G. 2001. RNA sequence evolution with secondary structure constraints: Comparison of substitution rate models using maximum-likelihood methods. Genetics. 157, 399–411.PubMedGoogle Scholar
  30. 30.
    Kosakovsky Pond S.L., Mannino F.V., Gravenor M.B., Muse S.V., Frost S.D.W. 2007. Evolutionary model selection with a genetic algorithm: A case study using stem RNA. Mol. Biol. Evol. 24, 159–170.PubMedCrossRefGoogle Scholar
  31. 31.
    Fischer W., Geard N. Reconstructing phylogeny from RNA secondary structure via simulated evolution.
  32. 32.
    Lyubetsky V., Zhizhina E., Rubanov L. 2008. Gibbs field approach to the problem of evolution of biological sequences. Probl. Pered. Inform. (in press).Google Scholar
  33. 33.
    Gorbunov K.Yu., Lyubetsky V.A. 2007. Modeling evolution of the nucleotide sequence with secondary structure. In: Proc. Computational Phylogenetics and Molecular Systematics: CPMS’2007. Moscow: KMK Scientific Press, pp. 68–75.Google Scholar
  34. 34.
    Lyubetsky V.A., Seliverstov A.V., Gorbunov K.Yu. 2007. Models of gene expression regulation and evolution of regulatory elements. In: Proc. Computational Phylogenetics and Molecular Systematics: CPMS’2007. Moscow: KMK Scientific Press, pp. 158–165.Google Scholar
  35. 35.
    Asarin E., Cachat Th., Seliverstov A.V., Touili T., Lyubetsky V.A. 2007. Attenuation regulation as a term rewriting system. In: Algebraic Biology. LNCS (LNBI), vol. 4545, Springer, pp. 81–94.Google Scholar
  36. 36.
    Gorbunov K.Yu., Mironov A.A., Lyubetsky V.A. 2003. Search for conserved secondary structures of RNA. Mol. Biol. 37, 850–860.CrossRefGoogle Scholar
  37. 37.
    Vitreschak A.G., Rodionov D.A., Mironov A.A., Gelfand M.S. 2002. Regulation of riboavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 30, 3141–3151.PubMedCrossRefGoogle Scholar
  38. 38.
    Gorbunov K.Yu., Lyubetsky V.A. 2007. Reconstruction of ancestral regulatory signals along a transcription factor tree. Mol. Biol. 41, 918–925.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • K. Yu. Gorbunov
    • 1
  • E. V. Lyubetskaya
    • 1
  • E. A. Asarin
    • 1
  • V. A. Lyubetsky
    • 1
  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations