Molecular Biology

, Volume 43, Issue 3, pp 410–417 | Cite as

Synthesis in Escherichia coli cells and characterization of the active exoribonuclease of severe acute respiratory syndrome coronavirus

Structural-Functional Analysis of Biopolymers and Their Complexes


The nsp14 protein, an exoribonuclease of the DEDD superfamily encoded by severe acute respiratory syndrome coronavirus (SARS-CoV), was expressed in fusion with different affinity tags. The recombinant nsp14 proteins with either GST fusion or 6-histidine tag were shown to possess ribonuclease activity but nsp14 with a short MGHHHHHHGS tag sequence at the N-terminus increased the solubility of nsp14 protein and facilitated the protein purification. Mutations of the conserved residues of nsp14 resulted in significant attenuation but not abolishment of the ribonuclease activity. Combination of fluorescence and circular dichroism spectroscopy analyses showed that the conformational stability of nsp14 protein varied with many external factors such as pH, temperature and presence of denaturing chemicals. These results provide new information on the structural features and would be helpful for further characterization of this functionally important protein.

Key words

SARS coronavirus exoribonuclease affinity tag mutagenesis conformational stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drosten C., Gunther S., Preiser W., et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Fouchier R.A., Kuiken T., Schutten M., van Amerongen G., van Doornum G.J., van den Hoogen B.G., Peiris M., Lim W., Stohr K., Osterhaus A.D. 2003. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature. 423, 240.PubMedCrossRefGoogle Scholar
  3. 3.
    Ksiazek T.G., Erdman D., Goldsmith C.S., et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966.PubMedCrossRefGoogle Scholar
  4. 4.
    Hussain S., Pan J., Chen Y., Yang Y., Xu J., Peng Y., Wu Y., Li Z., Zhu Y., Tien P., Guo D. 2005. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol. 79, 5288–5295.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen P., Jiang M., Hu T., Liu Q., Chen S.X., Guo D. 2007. Biochemical characterization of exoribonuclease encoded by SARS coronavirus. J. Biochem. Mol. Biol. 40, 649–655.PubMedGoogle Scholar
  6. 6.
    Ruan Y.J., Wei C.L., Ee A.L., et al. 2003. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet. 361, 1779–1785.PubMedCrossRefGoogle Scholar
  7. 7.
    Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J., Gorbalenya A.E. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004.PubMedCrossRefGoogle Scholar
  8. 8.
    Thiel V., Ivanov K.A., Putics A., et al. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84, 2305–2315.PubMedCrossRefGoogle Scholar
  9. 9.
    Minskaia E., Hertzig T., Gorbalenya A.E., Campanacci V., Cambillau C., Canard B., Ziebuhr J. 2006. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA. 103, 5108–5113.PubMedCrossRefGoogle Scholar
  10. 10.
    Ziebuhr J. 2005. The coronavirus replicase. In: Coronavirus Replication and Reverse Genetics. Ed. Enjuanes L. Berlin: Springer, pp. 58–94.Google Scholar
  11. 11.
    Arnau J., Lauritzen C., Petersen G.E., Pedersen J. 2006. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr. Purif. 48, 1–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith D.B., Johnson K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 67, 31–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Derewenda Z.S. 2004. The use of recombinant methods and molecular engineering in protein crystallization. Methods. 34, 354–363.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith M.C., Furman T.C., Ingolia T.D., Pidgeon C. 1988. Chelating peptide-immobilized metal ion affinity chromatography: A new concept in affinity chromatography for recombinant proteins. J. Biol. Chem. 263, 7211–7215.PubMedGoogle Scholar
  15. 15.
    Horton R.M., Hunt H.D., Ho S.N., Pullen J.K., Pease L.R. 1989. Engineering hybrid genes without the use of restriction enzymes: Gene splicing by overlap extension. Gene. 77, 61–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Astrom J., Astrom A., Virtanen A. 1992. Properties of a HeLa cell 3’ exonuclease specific for degrading poly(A) tails of mammalian mRNA. J. Biol. Chem. 267, 18154–18159.PubMedGoogle Scholar
  17. 17.
    Caruccio N., Ross J. 1994. Purification of a human polyribosome-associated 3′ to 5′ exoribonuclease. J. Biol. Chem. 269, 31814–31821.PubMedGoogle Scholar
  18. 18.
    Chekanova J.A., Dutko J.A., Mian I.S., Belostotsky D.A. 2002. Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′–>5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res. 30, 695–700.PubMedCrossRefGoogle Scholar
  19. 19.
    del Cardayre S.B., Raines R.T. 1994. Structural determinants of enzymatic processivity. Biochemistry. 33, 6031–6037.CrossRefGoogle Scholar
  20. 20.
    Bhardwaj K., Guarino L., Kao C.C. 2004. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J. Virol. 78, 12218–12224.PubMedCrossRefGoogle Scholar
  21. 21.
    Reuven N.B., Weller S.K. 2005. Herpes simplex virus type 1 single-strand DNA binding protein ICP8 enhances the nuclease activity of the UL12 alkaline nuclease by increasing its processivity. J. Virol. 79, 9356–9358.PubMedCrossRefGoogle Scholar
  22. 22.
    Zuo Y., Deutscher M.P. 2001. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res. 29, 1017–1026.PubMedCrossRefGoogle Scholar
  23. 23.
    Lakowicz J.R. 1999. Principles of Fluorescence Spectroscopy. 2nd ed. N.Y.: Kluwer, pp. 445–486.Google Scholar
  24. 24.
    Burstein E.A., Vedenkina N.S., Ivkova M.N. 1973. Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 18, 263–279.PubMedCrossRefGoogle Scholar
  25. 25.
    Deshpande S.S., Damodaran S. 1991. Denaturation behavior of phaseolin in urea, guanidine hydrochloride, and sodium dodecyl sulfate solutions. J. Protein Chem. 10, 103–115.PubMedCrossRefGoogle Scholar
  26. 26.
    King L. 1994. Effects of denaturant and pressure on the intrinsic fluorescence of titin. Arch. Biochem. Biophys. 311, 251–257.PubMedCrossRefGoogle Scholar
  27. 27.
    Levitt M., Chothia C. 1976. Structural patterns in globular proteins. Nature. 261, 552–558.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson W.C., Jr. 1988. Secondary structure of proteins through circular dichroism spectroscopy. Annu. Rev. Biophys. Biophys. Chem. 17, 145–166.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Virology and Modern Virology Research Centre, College of Life SciencesWuhan UniversityWuhanPR. China
  2. 2.Department of PathophysiologyBasic Medical College of Zhengzhou UniversityZhengzhouPR. China

Personalised recommendations