Advertisement

Molecular Biology

, Volume 42, Issue 6, pp 901–905 | Cite as

Detection of the Xvent-2 transcription factor in early development of Xenopus laevis

  • E. S. Pshennikova
  • A. S. VoroninaEmail author
Cell Molecular Biology

Abstract

The transcription factor Xvent-2 is thought to appear in Xenopus embryos after activation of the zygote genome in late blastula. This conclusion is based on detection of the Xvent-2 mRNA in embryos. Recombinant Xvent-2 and a specific antiserum were obtained and used to study Xvent-2 content at various stages of early development of X. laevis. Xvent-2 was detected in eggs and embryos from cleavage to the beginning of spontaneous motions (stage 26). As in other studies, the Xvent-2 mRNA was undetectable in embryos before the midblastula transition. The content of this mRNA grew, reached its maximum at stages 15–16, and then decreased. The content of the Xvent-2 protein remained constant, approximately 150 pg per embryo. The conclusions were made that Xvent-2 was maternally provided and stored in eggs and that the regulation of its synthesis in embryos was independent on the amount of its mRNA.

Key words

Xvent-2 Xenopus translation regulation Northern blot immunnoblotting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt J.E., von Dassow G., Kimelman D. 1996. Regulation of dorzal-ventral patterning: The ventralizing effects of the novel Xenopus homeobox gene Vox. Development. 122, 1711–1721.PubMedGoogle Scholar
  2. 2.
    Ladher R., Mohun N.J., Smith J.C., Snape A.M. 1996. Xom: A Xenopus homeobox gene that mediates the early effects of BMP-4. Development. 122, 2385–2394.PubMedGoogle Scholar
  3. 3.
    Onichtchouk D., Gawantka V., Dosch R., et al. 1996. The Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controlling dorsoventral patterning of Xenopus mesoderm. Development. 122, 3045–3053.PubMedGoogle Scholar
  4. 4.
    Papalopulu N., Kintner C. 1996. A Xenopus gene, Xbr-1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. Dev. Biol. 174, 104–114.PubMedCrossRefGoogle Scholar
  5. 5.
    Rastegar S., Friedle H., Frommer G., Knochel W. 1999. Transcriptional regulation of Xvent homeobox genes. Mech. Dev. 81, 139–149.PubMedCrossRefGoogle Scholar
  6. 6.
    Schuler-Metz A., Knochel S., Kaufmann E., Knochel W. 2000. The homeodomain transcription factor Xvent-2 mediates autocatalytic regulation of BMP-4 expression in Xenopus embryos. J. Biol. Chem. 275, 34365–34374.PubMedCrossRefGoogle Scholar
  7. 7.
    Melby A.E., Clements W.K., Kimelman D. 1999. Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox. Dev. Biol. 211, 293–305.PubMedCrossRefGoogle Scholar
  8. 8.
    Onichtchouk D., Glinka A., Niehrs C. 1998. Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development. 125, 1447–1456.PubMedGoogle Scholar
  9. 9.
    Trindade M., Tada M., Smith J.C. 1999. DNA-binding specificity and embryological function of Xom (Xvent-2). Dev. Biol. 216, 442–456.PubMedCrossRefGoogle Scholar
  10. 10.
    Melby A.E., Beach C., Mullins M., Kimelman D. 2000. Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Dev. Biol. 224, 275–285.PubMedCrossRefGoogle Scholar
  11. 11.
    Martynova N., Eroshkin F., Ermakova G., et al. 2004. Patterning the forebrain: FoxA4a/Pintallavis and Xvent2 determine the posterior limit of Xanf1 expression in the neural plate. Development. 131, 2329–2338.PubMedCrossRefGoogle Scholar
  12. 12.
    Rachidi M., Lopes C. 2006. Differential transcription of Barhl1 homeobox gene in restricted functional domains of the central nervous system suggests a role in brain patterning. Int. J. Dev. Neurosci. 24, 35–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Lopes C., Delezoide A.L., Delabar J.M., Rachidi M. 2006. BARHL1 homeogene, the human ortholog of the mouse Barhl1 involved in cerebellum development, shows regional and cellular specificities in restricted domains of developing human central nervous system. Biochem. Biophys. Res. Commun. 339, 296–304.PubMedCrossRefGoogle Scholar
  14. 14.
    Gao H., Wu B., Giese R., Zhu Z. 2007. Xom interacts with and stimulates transcriptional activity of LEF1/TCFs: Implications for ventral cell fate determination during vertebrate embryogenesis. Cell Res. 17, 345–356.PubMedCrossRefGoogle Scholar
  15. 15.
    Voronina A.S., Pshennikova E.S., Shatilov D.V. 2003. Distribution of the Xvent-2 mRNA between informosomes and polysomes in early frog development. Mol. Biol. 37, 429–435.CrossRefGoogle Scholar
  16. 16.
    Nieuwkoop P.D., Faber J. 1956. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis. Amsterdam: North Holland.Google Scholar
  17. 17.
    Voronina A.S., Potekhina E.S. 1999. Translational regulation of synthesis of proteins responsible for dorsoventral differentiation of Xenopus laevis embryos. Russ. J. Dev. Biol. 30, 65–71.Google Scholar
  18. 18.
    Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  19. 19.
    Voronina A.S., Pshennikova E.S. 2008. RNA isolation from the ribonucleoproteins fixed with formaldehyde. Appl. Biochem. Microbiol. 44, 218–222.Google Scholar
  20. 20.
    Voronina A.S. 2002. Translational regulation in early development of eukaryotes. Mol. Biol. 36, 773–782.CrossRefGoogle Scholar
  21. 21.
    Spirin A.S. 1969. Informosomes. Eur. J. Biochem. 10, 20–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Voronina A.S., Pshennikova E.S. 2006. Activity of specific mRNAs in early development of Xenopus and Rana embryos. J. Biol. Sci. 6, 115–120.CrossRefGoogle Scholar
  23. 23.
    Zhu Z., Kirschner M. 2002. Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development. Dev. Cell. 3, 557–568.PubMedCrossRefGoogle Scholar
  24. 24.
    Henningfeld K.A., Friedle H., Restegar S., Knochel W. 2002. Autoregulation of Xvent-2B: Direct interaction and functional cooperation of Xvent-2 and Smad1. J. Biol. Chem. 277, 2097–2103.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations