Advertisement

Molecular Biology

, Volume 42, Issue 6, pp 859–869 | Cite as

Downregulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1, and HYAL2 in non-small cell lung cancer

  • E. A. AnedchenkoEmail author
  • A. A. Dmitriev
  • G. S. Krasnov
  • O. O. Kondrat’eva
  • E. P. Kopantsev
  • T. V. Vinogradova
  • M. V. Zinov’eva
  • I. B. Zborovskaya
  • B. E. Polotsky
  • O. V. Sacharova
  • V. I. Kashuba
  • E. R. Zabarovsky
  • V. N. Senchenko
Genomics. Transcriptomics. Proteomics

Abstract

Chromosomal and genome abnormalities of 3p are frequent in many epithelial tumors, including lung cancer. Several critical regions with a high frequency of hemi-and homozygous deletions in tumors are known for 3p, and more than 20 cancer-related genes occur in 3p21.3. Quantitative real-time PCR was used to measure the mRNA level for tumor-suppressor and candidate genes of 3p21.3 (RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1, and HYAL2) in major types of non-small cell lung cancer (NSCLC): squamous cell lung cancer (SCC) and lung adenocarcinoma (AC). A significant (2-to 100-fold) and frequent (44–100%) decrease in mRNA levels was observed in NSCLC. The mRNA level decrease and its frequency depended on the histological type of NSCLC for all genes. The downregulation of RASSF1A and ITGA9 was significantly associated with AC progression; the same tendency was observed for RBSP3/CTDSPL, NPRL2/G21, HYAL1, and HYAL2. In SCC, the downregulation of all genes was not associated with the clinical stage, tumor cells differentiation, and metastasis in lymph nodes. The RBSP3/CTDSPL, NPRL2/G21, ITGA9, HYAL1, and HYAL2 mRNA levels significantly (5-to 13-fold on average) decreased at a high frequency (83–100%) as early as SCC stage I. Simultaneous downregulation of all six genes was observed in some tumor samples and was independent of the gene position in 3p21.3 and the functions of the protein products. The Spearman correlation coefficient r s was 0.63–0.91, p < 0.001. The highest r s values were obtained for gene pairs ITGA9-HYAL2 and HYAL1-HYAL2, whose products mediate cell-cell adhesion and cell-matrix interactions; coregulation of the genes was assumed on this basis. Both genetic and epigenetic mechanisms proved to be important for downregulation of RBSP3/CTDSPL and ITGA9. This finding supported the hypothesis that the cluster of cancerrelated genes in the extended 3p21.3 locus is simultaneously inactivated during the development and progression of lung cancer and other epithelial tumors. A significant and frequent decrease in the mRNA level of the six genes in SCC could be important for developing specific biomarker sets for early SCC diagnosis and new approaches to gene therapy of NSCLC.

Key words

gene expression human chromosome 3p tumor suppressor genes quantitative real-time PCR mRNA level NotI microarrays non-small cell lung cancer squamous cell lung cancer lung adenocarcinoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lerman M.I., Minna J.D. 2000. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: Identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 60, 6116–6133.PubMedGoogle Scholar
  2. 2.
    Zabarovsky E.R., Lerman M.I., Minna J.D. 2002. Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene. 21, 6915–6935.PubMedCrossRefGoogle Scholar
  3. 3.
    Braga E., Senchenko V., Bazov I., et al. 2002. Critical tumor suppressor gene regions on chromosome 3 regions in major human epithelial malignancies: Allelotyping and quantitative real time PCR. Int. J. Cancer. 100, 534–541.PubMedCrossRefGoogle Scholar
  4. 4.
    Senchenko V., Liu J., Loginov W., et al. 2004. Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas. Oncogene. 23, 5719–5728.PubMedCrossRefGoogle Scholar
  5. 5.
    Kashuba V.I, Li J., Wang F., et al. 2004. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc. Natl. Acad. Sci. USA. 6, 4906–4911.CrossRefGoogle Scholar
  6. 6.
    Albelda S.M. 1991. Endothelial and epithelial cell adhesion molecules. Am. J. Respir. Cell Mol. Biol. 3, 195–203.Google Scholar
  7. 7.
    Li J., Wang F., Haraldson K., et al. 2004. Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res. 64, 6438–6443.PubMedCrossRefGoogle Scholar
  8. 8.
    Schenk P.W., Brok M., Boersma A.W., et al. 2003. Anticancer drug resistance induced by disruption of the Saccharomyces cerevisiae NPR2 gene: A novel component involved in cisplatin-and doxorubicin-provoked cell kill. Mol. Pharmacol. 64, 259–268.PubMedCrossRefGoogle Scholar
  9. 9.
    Ueda K., Kawashima H., Ohtani S., et al. 2006. The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatin-induced resistance in human non-small cell lung cancer cells. Cancer Res. 66, 9682–9690.PubMedCrossRefGoogle Scholar
  10. 10.
    Hesson L.B., Cooper W.N., Latif F. 2007. Evaluation of the 3p21.3 tumor-suppressor gene cluster. Oncogene. 26, 7283–7301.PubMedCrossRefGoogle Scholar
  11. 11.
    Pfeifer G.P., Dammann R. 2005. Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry (Moscow). 70, 576–583.CrossRefGoogle Scholar
  12. 12.
    Braga E.A., Kashuba V.I., Malyukova A.V., et al. 2003. New tumor suppressor genes in hot spots of human chromosome 3: New methods of identification. Mol. Biol. 37, 194–212.CrossRefGoogle Scholar
  13. 13.
    Shivakumar L., Minna J., Sakamaki T., et al. 2002. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol. Cell. Biol. 12, 4309–4318.CrossRefGoogle Scholar
  14. 14.
    Toole B.P. 2004. Hyaluronan: From extracellular glue to pericellular cue. Nat. Rev. Cancer. 4, 528–539.PubMedCrossRefGoogle Scholar
  15. 15.
    Csoka A.B., Frost G.I., Stern R. 2001. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20, 499–508.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang F., Li J., Grigorieva E.V., Senchenko V.N., et al. 2008. HYAL1 and HYAL2 are tumor suppressor genes with asymmetric suppressor effect in vitro and in vivo. PLoS ONE. 3, № 8, e3031.Google Scholar
  17. 17.
    Anedchenko E.A., Kiseleva N.P., Dmitriev A.A., et al. 2007. Tumor suppressor gene RBSP3 in cervical carcinoma: Copy number and transcription level. Mol. Biol. 41, 1–10.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Li J., Protopopov A., Wang F., Senchenko V., et al. 2002. NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes. Proc. Natl. Acad. Sci. USA. 99, 10724–10729.PubMedCrossRefGoogle Scholar
  20. 20.
    Glantz S.A. 1994. Primer of Biostatistics. 4th ed. N.Y.: McGraw-Hill.Google Scholar
  21. 21.
    Kok K., Naylor S.L., Buys C.H. 1997. Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv. Cancer Res. 71, 27–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Dreijerink K., Braga E., Kuzmin I., et al. 2001. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc. Natl. Acad. Sci. USA. 98, 7504–7509.PubMedCrossRefGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
  26. 26.
    Dammann R., Schagdarsurengin U., Strunnikova M., et al. 2003. Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol. Histopathol. 18, 665–677.PubMedGoogle Scholar
  27. 27.
    Hibi K., Yamakawa K., Ueda R., et al. 1994. Aberrant upregulation of a novel integrin α subunit gene at 3p21.3 in small cell lung cancer. Oncogene. 9, 611–619.PubMedGoogle Scholar
  28. 28.
    Angeloni D. 2007. Molecular analysis of deletions in human chromosome 3p21 and the role of resident cancer genes in disease. Brief Funct. Genomic Proteomic. 1, 19–39.CrossRefGoogle Scholar
  29. 29.
    Senchenko V., Liu J., Braga E., et al. 2003. Deletion mapping of cervical carcinomas using quantitative real-time PCR identifies two frequently affected regions in 3p21.3. Oncogene. 22, 2984–2992.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • E. A. Anedchenko
    • 1
    Email author
  • A. A. Dmitriev
    • 1
  • G. S. Krasnov
    • 1
  • O. O. Kondrat’eva
    • 2
  • E. P. Kopantsev
    • 3
  • T. V. Vinogradova
    • 3
  • M. V. Zinov’eva
    • 3
  • I. B. Zborovskaya
    • 2
  • B. E. Polotsky
    • 2
  • O. V. Sacharova
    • 2
  • V. I. Kashuba
    • 4
  • E. R. Zabarovsky
    • 4
  • V. N. Senchenko
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Blokhin Cancer Research CenterRussian Academy of Medical SciencesMoscowRussia
  3. 3.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.MTCKarolinska InstituteStockholmSweden

Personalised recommendations