Advertisement

Molecular Biology

, Volume 42, Issue 4, pp 514–520 | Cite as

Antisense regulation of human gene MAP3K13: True phenomenon or artifact?

  • A. V. Marakhonov
  • A. V. Baranova
  • M. Yu. Skoblov
Genomics. Transcriptomics. Proteomics
  • 62 Downloads

Abstract

Antisense regulation of gene expression is a widespread but poorly understood mechanism of gene expression regulation. The potential role of antisense transcripts in tumorigenesis is most intriguing for functional research. Here we experimentally characterize an antisense mRNA asLZK overlapping the human MAP3K13/LZK gene that is involved in the mitogenesis-related JNK/SAPK signal transduction pathway. According to the functional annotation of the human genome, asLZK transcript (LOC647276) is expressed at the relatively high level and overrepresented in tumor samples. To our surprise, experimental study of human asLZK revealed that this sequence is not expressed, but represents a silent pseudogene of ribosomal protein L4 encoding gene RPL4. This pseudogene resulted from relatively recent retroposition of RPL4 mRNA into the first intron of MAP3K13 gene and does not participate in the regulation of MAP3K13 expression. This study stresses that, after initial in silico mapping efforts, experimental verification of the expression landscape is warranted.

Key words

antisense regulation of gene expression MAP3K13 pseudogene RPL4 genome annotation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yelin R., Dahary D., Sorek R., Levanon E.Y., Goldstein O., Shoshan A., Diber A., Biton S., Tamir Y., Khosravi R., Nemzer S., Pinner E., Walach S., Bernstein J., Savitsky K., Rotman G. 2003. Widespread occurrence of antisense transcription in the human genome. Nature Biotechnol. 21, 379–386.CrossRefGoogle Scholar
  2. 2.
    Numata K., Okada Y., Saito R., Kiyosawa H., Kanai A., Tomita M. 2007. Comparative analysis of cis-encoded antisense RNAs in eukaryotes. Gene. 392, 134–141.PubMedCrossRefGoogle Scholar
  3. 3.
    Munroe S.H., Zhu J. 2006. Overlapping transcripts, double-stranded RNA and antisense regulation: A genomic perspective. Cell. Mol. Life Sci. 63, 2102–2118.PubMedCrossRefGoogle Scholar
  4. 4.
    Lavorgna G., Dahary D., Lehner B., Sorek R., Sanderson C.M., Casari G. 2004. In search of antisense. Trends Biochem. Sci. 29, 88–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Klimov D., Skoblov M., Ryazantzev A., Tyazhelova T., Baranova A. 2006. In silico search for natural antisense transcripts reveals their differential expression in human tumors. J. Bioinform. Comput. Biol. 4, 515–521.PubMedCrossRefGoogle Scholar
  6. 6.
    Reis E.M., Nakaya H.I., Louro R., Canavez F.C., Flatschart A.V., Almeida G.T., Egidio C.M., Paquola A.C., Machado A.A., Festa F., Yamamoto D., Alvarenga R., da Silva C.C., Brito G.C., Simon S.D., Moreira-Filho C.A., Leite K.R., Camara-Lopes L.H., Campos F.S., Gimba E., Vignal G.M., El-Dorry H., Sogayar M.C., Barcinski M.A., da Silva A.M., Verjovski-Almeida S. 2004. Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer. Oncogene. 23, 6684–6692.PubMedCrossRefGoogle Scholar
  7. 7.
    Baranova A.V., Lobashev A.V., Ivanov D.V., Krukovskaya L.L., Yankovsky N.K., Kozlov A.P. 2001. In silico screening for tumour-specific expressed sequences in human genome. FEBS Lett. 508, 143–148.PubMedCrossRefGoogle Scholar
  8. 8.
    Krukovskaja L.L., Baranova A., Tyezelova T., Polev D., Kozlov A.P. 2005. Experimental study of human expressed sequences newly identified in silico as tumor specific. Tumour Biol. 26, 17–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Merlo L.M., Pepper J.W., Reid B.J., Maley C.C. 2006. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer. 6, 924–935.PubMedCrossRefGoogle Scholar
  10. 10.
    Ikeda A., Hasegawa K., Masaki M., Moriguchi T., Nishida E., Kozutsumi Y., Oka S., Kawasaki T. 2001. Mixed lineage kinase LZK forms a functional signaling complex with JIP-1, a scaffold protein of the c-Jun NH2-terminal kinase pathway. J. Biochem. 130, 773–781.PubMedGoogle Scholar
  11. 11.
    Johnson G.L., Nakamura K. 2007. The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochim. Biophys. Acta. 1773, 1341–1348.PubMedCrossRefGoogle Scholar
  12. 12.
    Vasilevskaya I., O’Dwyer P.J. 2003. Role of Jun and Jun kinase in resistance of cancer cells to therapy. Drug Resist. Update. 6, 147–156.CrossRefGoogle Scholar
  13. 13.
    Weiner A.M. 1986. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661.PubMedCrossRefGoogle Scholar
  14. 14.
    The ENCODE Project Consortium. 2004. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 306, 636–640.CrossRefGoogle Scholar
  15. 15.
    Zheng D., Frankish A., Baertsch R., Kapranov P., Reymond A., Choo S.W., Lu Y., Denoeud F., Antonarakis S.E., Snyder M., Ruan Y., Wei C.L., Gingeras T.R., Guigo R., Harrow J., Gerstein M.B. 2007. Pseudogenes in the ENCODE regions: Consensus annotation, analysis of transcription, and evolution. Genome Res. 17, 839–851.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang J.P., Lindsay B.G., Leebens-Mack J., Cui L., Wall K., Miller W.C., dePamphilis C.W. 2004. EST clustering error evaluation and correction. Bioinformatics. 20, 2973–2984.PubMedCrossRefGoogle Scholar
  17. 17.
    Lindlof A. 2003. Gene identification through large-scale EST sequence processing. Appl. Bioinformatics. 2, 123–129.PubMedGoogle Scholar
  18. 18.
    Harrow J., Denoeud F., Frankish A., Reymond A., Chen C.K., Chrast J., Lagarde J., Gilbert J.G., Storey R., Swarbreck D., Rossier C., Ucla C., Hubbard T., Antonarakis S.E., Guigo R. 2006. GENCODE: Producing a reference annotation for ENCODE. Genome Biol. Suppl 1, S4.1–S4.9.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • A. V. Marakhonov
    • 1
  • A. V. Baranova
    • 1
    • 2
  • M. Yu. Skoblov
    • 1
  1. 1.Research Center for Medical GeneticsRussian Academy of Medical SciencesMoscowRussia
  2. 2.Molecular and Microbiology Department, College of ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations