Molecular Biology

, Volume 42, Issue 4, pp 504–513

Single-strand conformational polymorphism markers associated with a major QTL for fusarium head blight resistance in wheat

Genomics. Transcriptomics. Proteomics

Abstract

A major quantitative trait locus (QTL) associated with resistance to Fusarium head blight (FHB) was identified on chromosome 3BS between simple sequence repeat (SSR) markers Xgwm389 and Xgwm493 in wheat “Ning 7840”, a derivative from “Sumai 3”. However, the marker density of SSR in the QTL region was much lower than that required for marker-assisted selection (MAS) and map-based cloning. The objective of this study was to exploit new markers to increase marker density in this QTL region by using single-strand conformational polymorphism (SSCP) markers developed from wheat-expressed sequence tags (ESTs) on 3BS bin 8-0.78-1.0. Sixty-nine out of 85 SSCP primer pairs amplified PCR (polymerase chain reaction) products from the genomic DNA of “Chinese Spring”. Thirty-four primer pairs amplified PCR products that could form clear ssDNA (single strand DNA) bands through denaturation treatment. Ten SSCP markers had polymorphisms between Ning 7840 and “Clark”. Five of the ten polymorphic SSCP markers were located on chromosome 3B by nullitetrasomic analysis. Three SSCP markers (Xsscp6, Xsscp20, and Xsscp21) were mapped into the region between Xgwm493 and Xgwm533 and possessed a higher coefficient of determination (R2) than Xgwm493 and Xgwm533. The SSCP markers, Xsscp6, Xsscp20, and Xsscp21, can be used for map-based cloning of the QTL and for marker-assisted selection in FHB resistance breeding.

Key words

Triticum aestivum Fusarium Head Blight QTL tagging SSCP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schroeder H.W., Christensen J.J. 1963. Factors affecting resistance of wheat to scab by Gibberella zeae. Phytopathology. 53, 831–838.Google Scholar
  2. 2.
    McMullen M., Jones R. Gallenberg D. 1997. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis., 81, 1340–1348.CrossRefGoogle Scholar
  3. 3.
    Ma H., Zhou M., Liu Z., Lu W. 2002. Progress on genetic improvement for resistance to wheat scab in KLA. J. Appl. Genet. 43A, 259–266.Google Scholar
  4. 4.
    Bai G.H., Shaner G. 1994. Scab of wheat: Prospects for control. Plant Dis. 78, 760–766.Google Scholar
  5. 5.
    Rudd J.C., Horsley R.D., McKendry A.L., Elias E.M. 2001. Host plant resistance genes for Fusarium head blight: Sources, mechanisms and utility in conventional breeding systems. Crop Sci., 41, 620–627.Google Scholar
  6. 6.
    Bai G., Kolb F.L., Shaner G., Domier L.L. 1999. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology. 89, 343–348.CrossRefGoogle Scholar
  7. 7.
    Zhou W.C., Kolb F.L., Bai G.H., et al. 2002. Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome. 45, 719–727.PubMedCrossRefGoogle Scholar
  8. 8.
    Guo P.G., Bai G.H., Shaner G.E. 2003. AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat. Theor. Appl. Genet. 106, 1011–1017.PubMedGoogle Scholar
  9. 9.
    Liu S.X., Anderson J.A. 2003. Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome. 46, 817–823.PubMedCrossRefGoogle Scholar
  10. 10.
    Orita M., Iwahana H., Kanazawa H., et al. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA. 86, 2766–2770.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu S.X., Anderson J.A. 2003. Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci. 43, 760–766.Google Scholar
  12. 12.
    Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A., Allard R.W.L. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc. Natl. Acad. Sci. USA. 81, 8014–8018.PubMedCrossRefGoogle Scholar
  13. 13.
    Plomion C., Hurme P., Frigerio J.M., et al. 1999. Developing SSCP markers in two Pinus species. Mol. Breed. 5, 21–31.CrossRefGoogle Scholar
  14. 14.
    Bassam B.J., Caetano-Anolles G., Gresshoffet P.M. 1991. Fast and sensitive polyacrylamide gels. Anal. Biochem. 196, 80–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Manly K.F., Jr., Cudmore R.H., Meer J.M. 2001. Map Manager QTX, cross-platform software for genetic mapping. Mammal. Genome. 12, 930–932.CrossRefGoogle Scholar
  16. 16.
    Hayashi K., Yandll D.W. 1993. How sensitive is PCRSSCP? Hum. Mut. 2, 338–346.PubMedCrossRefGoogle Scholar
  17. 17.
    Sheffield V.C., Beck J.S., Kwitek A.E., et al. 1993. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics. 16, 325–332.PubMedCrossRefGoogle Scholar
  18. 18.
    Glavac D., Dean M. 1993. Optimization of the singlestrand conformation polymorphism (SSCP) technique for detection of point mutations. Hum. Mut. 2, 404–414.PubMedCrossRefGoogle Scholar
  19. 19.
    Ayan S., Gokce G., Kílícarslan H., et al. 2001. K-Ras mutation in transitional cell carcinoma of urinary bladder. Int. Urol. Nephrol. 33, 363–367.PubMedCrossRefGoogle Scholar
  20. 20.
    Jorge S.B., Melo M.B., Costa F.F., Sonatil M.F. 2003. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism. Brazil. J. Med. Biol. Res. 36, 1471–1474.Google Scholar
  21. 21.
    Bertin I., Zhu J.H., Gale M.D. 2005. SSCP-SNP in pearl millet: A new marker system for comparative genetics. Theor. Appl. Genet. 110, 1467–1472.PubMedCrossRefGoogle Scholar
  22. 22.
    Hongtrakul V., Slabaugh M.B., Knapp S.J. 1998. DFLP, SSCP, and SSR markers for delta 9-stearoyl-acyl carrier protein desaturases strongly expressed in developing seeds of sunflower: intron lengths are polymorphic among elite inbred lines. Mol. Breed. 4, 195–203.CrossRefGoogle Scholar
  23. 23.
    Baba S., Kukita Y., Higasa K., et al. 2003. Singlestranded conformational polymorphism analysis using automated capillary array electrophoresis apparatuses. Biotechnology. 34, 746–750.Google Scholar
  24. 24.
    Papakostas S., Dooms S., Christodoulou M., et al. 2006 Identification of cultured Brachionus rotifers based on RFLP and SSCP screening. Mar. Biotechnol. 8, 547–559.PubMedCrossRefGoogle Scholar
  25. 25.
    Williams J.L., Lester D.H., Teres V.M., et al. 1997. Mapping the bovine factor H gene to chromosome 16 by SSCP analysis. Mammal. Genome. 8, 77–78.CrossRefGoogle Scholar
  26. 26.
    Srinivasan J., Sinz W., Jesse T., et al. 2003. An integrated physical and genetic map of the nematode Pristionchus pacificus. Mol. Genet. Genomics. 269, 715–722.PubMedCrossRefGoogle Scholar
  27. 27.
    Fulton R.E., Salasek M.L., DuTeau N.M., Black W.C. 2001. SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome. Genetics. 158, 715–726.PubMedGoogle Scholar
  28. 28.
    Gallego F., Feuillet C., Messmer M., et al. 1998. Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome. 41, 328–336.PubMedCrossRefGoogle Scholar
  29. 29.
    Waldron B.L., Moreno-Sevilla B., Anderson J.A., et al. 1999. RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci. 39, 805–811.Google Scholar
  30. 30.
    Anderson J.A., Stack R.W., Liu S., et al. 2001. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet. 102, 1164–1168.CrossRefGoogle Scholar
  31. 31.
    Buerstmayr H., Lemmens M., Hartl L., et al. 2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat: I. Resistance to fungal spread (type II resistance). Theor. Appl. Gene. 104, 84–91.CrossRefGoogle Scholar
  32. 32.
    Buerstmayr H., Steiner B., Hartl L., et al. 2003. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat: II. Resistance to fungal penetration and spread. Theor. Appl. Genet. 107, 503–508.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • G. H. Yu
    • 1
    • 2
  • H. X. Ma
    • 2
  • G. H. Bai
    • 3
  • K. X. Tang
    • 1
  1. 1.Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Institute of Agricultural BiotechnologyJiangsu Academy of Agricultural SciencesNanjingChina
  3. 3.USDA-ARSPlant Science and Entomology Research UnitManhattanUSA

Personalised recommendations