Advertisement

Molecular Biology

, 42:381 | Cite as

Molecular cloning and expression profile of a jasmonate biosynthetic pathway gene for allene oxide cyclase from Hyoscyamus niger

  • Keji Jiang
  • Zhihua Liao
  • Yan Pi
  • Zhuoshi Huang
  • Rong Hou
  • Ying Cao
  • Qing Wang
  • Xiaofen Sun
  • Kexuan Tang
Genomics. Transcriptomics. Proteomics

Abstract

Hyoscyamus niger L. is a medicinal plant which produces a class of jasmonate-responsive pharmaceutical secondary metabolites named tropane alkaloids. As a family of signaling phytohormones, jasmonates play significant roles in the biosynthesis of many plant secondary metabolites. In the jasmonate biosynthetic pathway of plants, allene oxide cyclase (AOC, EC 5.3.99.6) catalyzes the most important step. Here we cloned a cDNA from H. niger, named HnAOC (GenBank accession no.: AY708383), which was 1044 bp long, with a 747-bp open reading frame (ORF) encoding a polypeptide of 248 amino acid residues. Southern blot analysis indicated that it was a multicopy gene. RT-PCR analysis revealed that the expression of HnAOC was regulated by various stresses and elicitors, with methyl-jasmonate showing the most prominent inducement. The characterization of HnAOC would be helpful for improving the production of valuable secondary metabolites by regulating the biosynthesis of jasmonates.

Key words

allene oxide cyclase Hyoscyamus niger jasmonate RT-PCR secondary metabolite 

References

  1. 1.
    Li R., Reed D.W., Liu E.W., Nowak J., Pelcher L.E., Page J.E., Covello P.S. 2006. Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement. Chem. Biol. 13, 513–520.PubMedCrossRefGoogle Scholar
  2. 2.
    Biondi S., Scaramagli S., Oksman-Caldentey K.M., Poli F. 2002. Secondary metabolism in root and callus cultures of Hyoscyamus muticus L.: The relationship between morphological organization and response to methyl jasmonate. Plant Sci. 163, 563–569.CrossRefGoogle Scholar
  3. 3.
    Alvarez S.P., Marconi P.L., Giulietti A. 2003. Comparison of the influence of different elicitors on hyoscyamine and scopolamine content in hairy root cultures of Brugmansia candida. In Vitro Cell Dev. 39, 640–644.Google Scholar
  4. 4.
    Kang S.M., Jung H.Y., Kang Y.M., Yun D.J., Bahk J.D., Yang J.K., Choi M.S. 2004. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Sci. 166, 745–751.CrossRefGoogle Scholar
  5. 5.
    Aerts R.J., Gisi D., Decarolis E., Deluca V., Baumann T.W. 1994. Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J. 5, 635–643.CrossRefGoogle Scholar
  6. 6.
    van der Fits L., Memelink J. 2000. ORCA3, a jasmonateresponsive transcriptional regulator of plant primary and secondary metabolism. Science. 289, 295–297.PubMedCrossRefGoogle Scholar
  7. 7.
    Stumpe M., Feussner I. 2006. Formation of oxylipins by CYP74 enzymes. Phytochem. Rev. 5, 347–357.CrossRefGoogle Scholar
  8. 8.
    Creelman R.A., Mullet J.E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–381.PubMedCrossRefGoogle Scholar
  9. 9.
    Wasternack C., Parthier B. 1997. Jasmonate signaled plant gene expression. Trends Plant Sci. 2, 302–307.CrossRefGoogle Scholar
  10. 10.
    Ziegler J., Stenzel I., Hause B., Maucher H., Hamberg M., Grimm R., Ganal M., Wasternack C. 2000. Molecular cloning of allene oxide cyclase, the enzyme establishing the stereochemistry of octadecanoids and jasmonates. J. Biol. Chem. 275, 19 132–19 138.Google Scholar
  11. 11.
    Delker C., Stenzel I., Hause B., Miersch O., Feussner I., Wasternack C. 2006. Jasmonate biosynthesis in Arabidopsis thaliana: Enzymes, products, regulation. Plant Biol. 8, 297–306.PubMedCrossRefGoogle Scholar
  12. 12.
    Farmer E.E., Ryan C.A. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA. 87, 7713–7716.PubMedCrossRefGoogle Scholar
  13. 13.
    Thomma B., Eggermont K., Penninckx I., Mauch-Mani B., Vogelsang R., Cammue B.P.A., Broekaert W.F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA. 95, 15 107–15 111.CrossRefGoogle Scholar
  14. 14.
    Bohlmann H., Vignutelli A., Hilpert B., Miersch O., Wasternack C., Apel K. 1998. Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett. 437, 281–286.PubMedCrossRefGoogle Scholar
  15. 15.
    Blechert S., Brodschelm W., Holder S., Kammerer L., Kutchan T.M., Mueller M.J., Xia Z.Q., Zenk M.H. 1995. The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA. 92, 4099–4105.PubMedCrossRefGoogle Scholar
  16. 16.
    Baldwin I.T., Zhang Z.P., Diab N., Ohnmeiss T.E., McCloud E.S., Lynds G.Y., Schmelz E.A. 1997. Quantification, correlations and manipulations of woundinduced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta. 201, 397–404.CrossRefGoogle Scholar
  17. 17.
    Gundlach H., Muller M.J., Kutchan T.M., Zenk M.H. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA. 89, 2389–2393.PubMedCrossRefGoogle Scholar
  18. 18.
    Mueller M.J., Brodschelm W., Spannagl E., Zenk M.H. 1993. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc. Natl. Acad. Sci. USA. 90, 7490–7494.PubMedCrossRefGoogle Scholar
  19. 19.
    Baldwin I.T., Schmelz E.A., Ohnmeiss T.E. 1994. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J. Chem. Ecol. 20, 2139–2157.CrossRefGoogle Scholar
  20. 20.
    Mizukami H., Tabira Y., Ellis B.E. 1993. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell-suspension cultures. Plant Cell Rep. 12, 706–709.CrossRefGoogle Scholar
  21. 21.
    Ketchum R.E.B., Gibson D.M., Croteau R.B., Shuler M.L. 1999. The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol. Bioeng. 62, 97–105.PubMedCrossRefGoogle Scholar
  22. 22.
    Koch T., Krumm T., Jung V., Engelberth J., Boland W. 1999. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol. 121, 153–162.PubMedCrossRefGoogle Scholar
  23. 23.
    Yukimune Y., Hara Y., Nomura E., Seto H., Yoshida S. 2000. The configuration of methyl jasmonate affects paclitaxel and baccatin III production in Taxus cells. Phytochemistry. 54, 13–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y.D., Yuan Y.J., Wu J.C. 2004. Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension cultures of Taxus chinensis var. mairei. Biochem. Eng. J. 19, 259–265.CrossRefGoogle Scholar
  25. 25.
    Song W.C., Brash A.R. 1991. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science. 253, 781–784.PubMedCrossRefGoogle Scholar
  26. 26.
    Ziegler J., Hamberg M., Miersch O., Parthier B. 1997. Purification and characterization of allene oxide cyclase from dry corn seeds. Plant Physiol. 114, 565–573.PubMedGoogle Scholar
  27. 27.
    Pi Y., Liao Z.H., Chai Y.R., Zeng H.N., Wang P., Gong Y.F., Pang Y.Z., Sun X.F., Tang K.X. 2006. Molecular cloning and characterization of a novel stem-specific gene from Camptotheca acuminata. J. Biochem. Mol. Biol. 39, 68–75.PubMedGoogle Scholar
  28. 28.
    Emanuelsson O., Nielsen H., von Heijne G. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984.PubMedCrossRefGoogle Scholar
  29. 29.
    Combet C., Blanchet C., Geourjon C., Deleage G. 2000. NPS: Network protein sequence analysis. Trends Biochem. Sci. 25, 147–150.PubMedCrossRefGoogle Scholar
  30. 30.
    Hofmann E., Zerbe P., Schaller F. 2006. The crystal structure of Arabidopsis thaliana allene oxide cyclase: Insights into the oxylipin cyclization reaction. Plant Cell. 18, 3201–3217.PubMedCrossRefGoogle Scholar
  31. 31.
    Agrawal G.K., Jwa N.S., Agrawal S.K., Tamogami S., Iwahashi H., Rakwal R. 2003. Cloning of novel rice allene oxide cyclase (OsAOC): mRNA expression and comparative analysis with allene oxide synthase (OsAOS) gene provides insight into the transcriptional regulation of octadecanoid pathway biosynthetic genes in rice. Plant Sci. 164, 979–992.CrossRefGoogle Scholar
  32. 32.
    Stenzel I., Hause B., Miersch O., Kurz T., Maucher H., Weichert H., Ziegler J., Feussner I., Wasternack C. 2003. Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol. Biol. 51, 895–911.PubMedCrossRefGoogle Scholar
  33. 33.
    Maucher H., Stenzel I., Miersch O., Stein N., Prasad M., Zierold U., Schweizer P., Dorer C., Hause B., Wasternack C. 2004. The allene oxide cyclase of barley (Hordeum vulgare L.): Cloning and organ-specific expression. Phytochemistry. 65, 801–811.PubMedCrossRefGoogle Scholar
  34. 34.
    Liechti R., Farmer E.E. 2002. The jasmonate pathway. Science. 296, 1649–1650.PubMedCrossRefGoogle Scholar
  35. 35.
    Turner J.G., Ellis C., Devoto A. 2002. The jasmonate signal pathway. Plant Cell. 14, S153–S164.PubMedGoogle Scholar
  36. 36.
    Peña-Cortés H., Albrecht T., Prat S., Weiler E.W., Willmitzer L. 1993. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta. 191, 123–128.CrossRefGoogle Scholar
  37. 37.
    Yamada A., Saitoh T., Mimura T., Ozeki Y. 2002. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol. 43, 903–910.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • Keji Jiang
    • 1
  • Zhihua Liao
    • 2
  • Yan Pi
    • 1
  • Zhuoshi Huang
    • 1
  • Rong Hou
    • 1
  • Ying Cao
    • 1
  • Qing Wang
    • 1
  • Xiaofen Sun
    • 1
  • Kexuan Tang
    • 1
    • 3
  1. 1.State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, Morgan-Tan International Center for Life SciencesFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Laboratory of Natural Products and Metabolic Engineering, Chongqing Sweet Potato Research Center, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Life SciencesSouthwest UniversityChongqingPeople’s Republic of China
  3. 3.Plant Biotechnology Research Center, School of Agriculture and Biology, Fudan-SJTU-Nottingham Plant Biotechnology R & D CenterShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations