Molecular Biology

, 42:243

Calcium-dependent mechanism of somatic embryogenesis in Panax ginseng cell cultures expressing the rolC oncogene

  • K. V. Kiselev
  • T. Yu. Gorpenchenko
  • G. K. Tchernoded
  • A. S. Dubrovina
  • O. V. Grishchenko
  • V. P. Bulgakov
  • Yu. N. Zhuravlev
Cell Molecular Biology


The Panax ginseng 2c3 embryogenic cell culture was earlier obtained by callus cell transformation with Agrobacterium rhizogenes rolC. Calcium channel blockers (LaCl3, verapamil, and niflumic acid) reduced the production of somatic embryos in the 2c3 culture, implicating the Ca2+ signaling system in plant somatic embryogenesis. The protein kinase inhibitors W7 and H7 also decreased the yield of somatic embryos in the 2c3 culture. The total CDPK expression in the 2c3 culture was 1.2-to 1.5-fold lower than in a control callus culture as a result of a silencing of the genes belonging to the PgCDPK1 (PgCDPK1a and PgCDPK1b) and PgCDPK3 (PgCDPK3a) subfamilies. Expression of the PgCDPK2 subfamily genes (PgCDPK2b and PgCDPK2d) was increased. It was assumed that some genes of the PgCDPK1, PgCDPK2, and PgCDPK3 subfamilies were responsible for generation of embryogenic cells in the 2c3 culture. For the first time, rolC expression and embryogenesis were associated with changes in the expression of certain CDPK genes.

Key words

Panax ginseng Agrobacterium rhizogenes rol genes somatic embryogenesis CDPK rol


  1. 1.
    Faiss M., Strnad M., Redig P., Dolezal K., Hanus J., Van Onckelen H., Schmulling T. 1996. Chemically induced expression of the rolC-encoded β-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant. J. 10, 33–46.CrossRefGoogle Scholar
  2. 2.
    Nilsson O., Moritz T., Sundberg B., Sandberg G., Olsson O. 1996. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol. 112, 493–502.PubMedGoogle Scholar
  3. 3.
    Spena A., Schmulling T., Koncz C., Schell J.S. 1987. Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J. 6, 3891–3899.PubMedGoogle Scholar
  4. 4.
    Schmulling T., Shell J., Spena A. 1988. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 7, 2621–2629.PubMedGoogle Scholar
  5. 5.
    Bonhomme V., Laurain Mattar D., Fliniaux M.A. 2000. Effects of the rolC gene on hairy root: Induction development and tropane alkaloid production by Atropa belladonna. J. Nat. Prod. 63, 1249–1252.PubMedCrossRefGoogle Scholar
  6. 6.
    Cabrera-Ponce J.L., Vegas-Garcia A., Herrera-Estrella L. 1996. Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes in vitro. Cell Dev. Biol. Plant. 32, 86–90.CrossRefGoogle Scholar
  7. 7.
    Ishizaki T., Hoshino Y., Masuda K., Oosawa K. 2002. Explants of Ri-transformed hairy roots of spinach can develop embryogenic calli in the absence of gibberelic acid, an essential growth regulator for induction of embryogenesis from non-transformed roots. Plant Sci. 163, 223–231.CrossRefGoogle Scholar
  8. 8.
    Gorpenchenko T.Y., Kiselev K.V., Bulgakov V.P., Tchernoded G.K., Bragina E.A., Khodakovskaya M.V., Koren O.G., Batygina T.B., Zhuravlev Yu.N. 2006. The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta. 223, 457–467.PubMedCrossRefGoogle Scholar
  9. 9.
    Bulgakov V.P., Tchernoded G.K., Mischenko N.P., Shkryl Yu.N., Glazunov V.P., Fedoreyev S.A., Zhuravlev Yu.N. 2003. Effects of Ca2+ channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia cultures transformed by the rolB and rolC genes. Planta. 217, 349–355.PubMedCrossRefGoogle Scholar
  10. 10.
    Asano T., Tanaka N., Yang G., Hayashi N., Komatsu S. 2005. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: Comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol. 46, 356–366.PubMedCrossRefGoogle Scholar
  11. 11.
    Cheng S.H., Willmann M.R., Chen H.C., Sheen J. 2002. Calcium signaling through protein kinases: The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129, 469–485.PubMedCrossRefGoogle Scholar
  12. 12.
    Harper J.F., Harmon A. 2005. Plants, symbiosis and parasites: A calcium signaling connection. Nat. Rev. Mol. Cell Biol. 6, 555–566.PubMedCrossRefGoogle Scholar
  13. 13.
    Lecourieux D., Ranjeva R., Pugin A. 2006. Calcium in plant defense-signaling pathways. New Phytol. 171, 249–269PubMedCrossRefGoogle Scholar
  14. 14.
    Ludwig A.A., Romeis T., Jones J.D. 2004. CDPK-mediated signaling pathways: Specificity and cross-talk. J. Exp. Bot. 55, 181–188.PubMedCrossRefGoogle Scholar
  15. 15.
    Bulgakov V.P., Zhuravlev Yu.N., Kozyrenko M.M., Makhan’kov V.V., Uvarova N.I. 1991. Contents of dammarin-type glycosides in different callus cultures of Panax ginseng C.A. Meyer. Rast. Resursy. 27, 94–100.Google Scholar
  16. 16.
    Bulgakov V.P., Khodakovskaya M.V., Labetskaya N.V., Tchernoded G.K., Zhuravlev Y.N. 1998. The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochem. 49, 1929–1934.CrossRefGoogle Scholar
  17. 17.
    Bulgakov V.P., Veselova M.V., Tchernoded G.K., Kiselev K.V., Fedoreyev S.A., Zhuravlev Y.N. 2005. Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. Planta. 221, 471–478.PubMedCrossRefGoogle Scholar
  18. 18.
    Kiselev K.V., Kusaykin M.I., Dubrovina A.S., Bezverbny D.A., Zvyagintseva T.N., Bulgakov V.P. 2006. The rolC gene induces expression of a pathogenesis-related beta-1,3-glucanase in transformed ginseng cells. Phytochem. 67, 2225–2231, 2225–2231.CrossRefGoogle Scholar
  19. 19.
    Anil V.S., Rao S.K. 2000. Calcium-mediated signaling during sandalwood somatic embryogenesis: Role of exogenous calcium as second messenger. Plant Physiol. 123, 1301–1131.PubMedCrossRefGoogle Scholar
  20. 20.
    Harmon A.C., Gribskov M., Gubrium E., Harper J.F. 2001. The CDPK superfamily of protein kinases. New Phytol. 151, 175–183.CrossRefGoogle Scholar
  21. 21.
    Yu X.C., Zhu S.Y., Gao G.F., Wang X.J., Zhao R., Zou K.Q., Wang X.F., Zhang X.Y., Wu F.Q., Peng C.C., Zhang D.P. 2007. Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Mol. Biol. 64, 531–538.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee S.S., Cho H.S., Yoon G.M., Ahn J.W., Kim H.H., Pai H.S. 2003. Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J. 33, 825–840.PubMedCrossRefGoogle Scholar
  23. 23.
    Yuan X., Deng K.Q., Zhao X.Y., Wu X.J., Qin Y.Z., Tang D.Y., Liu X.M. 2007. A calcium-dependent protein kinase is involved in plant hormone signal transduction in Arabidopsis. J. Plant Physiol. Mol. Biol. 33, 227–234.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • K. V. Kiselev
    • 1
    • 2
  • T. Yu. Gorpenchenko
    • 1
  • G. K. Tchernoded
    • 1
  • A. S. Dubrovina
    • 1
    • 2
  • O. V. Grishchenko
    • 1
  • V. P. Bulgakov
    • 1
  • Yu. N. Zhuravlev
    • 1
  1. 1.Institute of Biology and Soil Science, Far East DivisionRussian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern State UniversityVladivostokRussia

Personalised recommendations