Molecular Biology

, Volume 42, Issue 2, pp 234–242 | Cite as

Molecular identification and expression of heat shock cognate 70 (HSC70) in the pacific white shrimp Litopenaeus vannamei

Cell Molecular Biology


Heat shock protein 70s (HSP70s) are fundamental chaperone proteins that are indispensable to most living organisms. In order to investigate the function of HSP70 and heat shock response in shrimp, a heat shock cognate (HSC70) gene of the white shrimp (Litopenaeus vannamei), containing a 1959-bp open reading frame, was cloned and characterized. The amino acid sequence, 71.5 kDa of molecular weight, shares 80–99.6% homology with 12 diverse species’ HSP70s and HSC70s. In fact, some segments of the eukaryotic HSC70 sequence, such as ATP/GTP-binding site, cytoplasmic HSP70 C-terminal sequence, and GGMP/GAP repeats, are also found in the putative shrimp HSC70. Moreover, multitissue RT-PCR was performed to assay the basal expressions of HSC70 in the heart, gill, hepatopancreas, stomach, gut, and muscle. The results demonstrate that the basal expressions of HSC70 in theses organs are similar to that of β-actin. Furthermore, quantitative real-time experiments showed that HSC70 was upregulated in hepatopancreas (4.6-fold), stomach (5.9-fold), gut (2.6-fold), and muscle (3.5-fold) but not in the heart (1.7-fold) and gill (1.6-fold) after 2 h of heat shock. Nevertheless, the HSC70 was found to be highly expressed in the heart and gill following 6 h of heat shock. This suggests that HSC70 in white shrimp possess both short-term and long-term responses to heat shock stress, indicating this HSC70 may be a heat-dependent HSC70 member. Finally, we constructed an expression vector to generate HSC70 in Escherichia coli BL21, which displayed immune cross-reactivity with mouse HSP70 antibody. In conclusion, the identification and expression of the white shrimp HSC70 gene present useful data for studying the molecular mechanism of heat shock response and the effect of heat shock proteins in shrimps’ cytoprotection.

Key words

HSC70 HSP70 heat shock Litopenaeus vannamei expression cloning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ritossa F.A. 1962. New puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 18, 18 571–18 573.CrossRefGoogle Scholar
  2. 2.
    Sanders B.M. 1993. Stress proteins in aquatic organisms and environmental perspective. Crit. Rev. Toxicol. 23, 49–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Feder M.E., Hofmann G.E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282.PubMedCrossRefGoogle Scholar
  4. 4.
    Georgopoulos C., Welch W.J. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9, 601–634.PubMedCrossRefGoogle Scholar
  5. 5.
    Hartl F.U. 1996. Molecular chaperones in cellular protein folding. Nature. 381, 571–579.PubMedCrossRefGoogle Scholar
  6. 6.
    Bukau B., Horwich A.L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell Pres. 92, 351–366.Google Scholar
  7. 7.
    Hightower L.E. 1993. A brief perspective on the heat-shock response and stress proteins. Mar. Environ. Res. 35, 79–83.CrossRefGoogle Scholar
  8. 8.
    Clegg J.S., Uhlinger K.R., Jackson S.A. 1998. Induced thermotolerance and the heat shock protein 70 family in the Pacific oyster Crassostrea gigas. Mol. Mar. Biol. Biotec. 7, 21–30.Google Scholar
  9. 9.
    Snyder M.J., Grivetz E., Mulder E.P. 2001. Induction of marine mollusk stress proteins by chemical or physical stress. Arch. Environ. Contam. Toxicol. 41, 22–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Werner I., Teh S.J., Datta S., Lu X.Q., Young T.M. 2004. Biomarker responses in Macoma nasuta (Bivalvia) exposed to sediments from northern San Francisco Bay. Mar. Environ. Res. 58, 299–304.PubMedCrossRefGoogle Scholar
  11. 11.
    DuBeau S.F., Pan F., Tremblay G.C., Bradley T.M. 1998. Thermal shock of salmon in vivo induces the heat shock protein hsp70 and confers protection against osmotic shock. Aquaculture. 168, 311–323.CrossRefGoogle Scholar
  12. 12.
    Xie S.T., Wu R., Xu Z.N., Lin X.T., Zhang Q.Z. 2005. Induced protection of sublethal temperature heat shock in Litopeneaus vannamei. Acta Scientiarum Naturalium Universitatis Sunyatsen. 44, 87–89.Google Scholar
  13. 13.
    Chen S.N. 1991. Environmental problems of aquaculture in Asia and their solutions. Rev. Sci. Tech. 10, 609–627.PubMedGoogle Scholar
  14. 14.
    He J.G. 2001. The influences of environments on WSSV epidemic and the strategy of controlling. In: Disease Ourbreaks abd Their Control in Marine Aquaculture Species. Ed. Xiang J.H. Beijing: Ocean Press, 194–200.Google Scholar
  15. 15.
    Bondad-Reantaso M.G., Subasinghe R.P., Arthur J.R., Ogawa K., Chinabut S., Adlard R., Tan Z., Shariff M. 2005. Disease and health management in Asian aquaculture. Vet. Parasitol. 132, 249–272.PubMedCrossRefGoogle Scholar
  16. 16.
    Boutet I., Tanguy A., Rousseau S., Auffret M., Moraga D. 2003. Molecular identification and expression of heat shock cognate 70 and heat shock protein 70 genes in the Pacific oyster Crassostrea gigas. Cell Stress Chap. 8, 76–85.CrossRefGoogle Scholar
  17. 17.
    Liu J., Yang W.J., Zhu X.J., Karouna-Renier N.K., Rao R.K. 2004. Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress Chap. 9, 313–323.CrossRefGoogle Scholar
  18. 18.
    Deane E.E., Woo N.Y. 2005. Cloning and characterization of the hsp70 multigene family from silver sea bream: Modulated gene expression between warm and cold temperature acclimation. Biochem. Biophys. Res. Commun. 330, 776–783.PubMedCrossRefGoogle Scholar
  19. 19.
    Lo W.Y., Liu K.F., Liao I.C., Song Y.L. 2004. Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell Stress Chap. 9, 332–343.CrossRefGoogle Scholar
  20. 20.
    Jiao C.Z., Wang Z.Z., Li F.H., Zhang C.C., Xiang J.H. 2004. Cloning, sequencing and expression analysis of cDNA encoding a constitutive heat shock protein 70 (HSC70) in Fenneropenaeus chinensis. Chinese Sci. Bull. 49, 2385–2393.CrossRefGoogle Scholar
  21. 21.
    Wu R., Xie S.T., Zhang Q.Z., Xu Z.N. 2005. Amplification and sequence analysis of complete Hsp70 gene of Litopeneaus vannamei. J. Jinan Univ. 26, 428–433.Google Scholar
  22. 22.
    Leung S.M., Hightower L.E. 1997. Mammalian Hsc70 and Hsp70 proteins. In: Guidebook to Molecular Chaperones and Protein Folding Catalysts. Ed. Gething M.J. Oxford: Oxford Univ. Press, Sambrook & Tooze Imprint, 52–58.Google Scholar
  23. 23.
    Boorstein W.R., Ziegelhoffer T., Craig E.A. 1994. Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38, 1–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Freeman B.C., Myers P.M., Schumacher R. 1995. Identification of a regulatory motif in HSP70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 14, 2281–2292.PubMedGoogle Scholar
  25. 25.
    Demand Z.Z., Luders J., Hohfeld J. 1998. The carboxylterminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol. Cell. Biol. 18, 2023–2028.PubMedGoogle Scholar
  26. 26.
    Günther E., Walter L. 1994. Genetic aspects of the hsp70 multi-family in vertebrates. Experientia. 50, 987–1001.PubMedCrossRefGoogle Scholar
  27. 27.
    Ali K.S., Dorgai L., Abraham M., Hermesz E. 2003. Tissue-and stress-specific expression of two hsc70 genes in carp. Biochem. Biophys. Res. Commun. 307, 503–509.PubMedCrossRefGoogle Scholar
  28. 28.
    Müller F.W., Igloi G.L., Beck C.F. 1992. Structure of a gene encoding heat-shock protein HSP70 from the unicellular alga Chlamydomonas reinhardtii. Gene. 111, 165–173.PubMedCrossRefGoogle Scholar
  29. 29.
    Stefani R.M., Gomes S.L. 1995. A unique intron-containing hsp70 gene induced by heat shock and during sporulation in the aquatic fungus Blastocladiella emersonii. Gene. 152, 19–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Kay R.J., Russnak R.H., Mathias C., Candido E.P.M. 1987. Expression of intron-containing C. elegans heat shock genes in mouse cells demonstrates divergence of 3′ splice recognition sequences between nematodes and vertebrates, and an inhibitory effect of heat shock on mammalian splicing apparatus. Nucl. Acids Res. 15, 3723–3741.PubMedCrossRefGoogle Scholar
  31. 31.
    Franzellitti S., Fabbri E. 2005. Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem. Biophys. Res. Commun. 336, 1157–1163.PubMedCrossRefGoogle Scholar
  32. 32.
    Taviara M., Gabriele T., Kola I., Anderson R.L. 1996. A hitchhiker’s guide to the human hsp70 family. Cell Stress Chap. 1, 23–28.CrossRefGoogle Scholar
  33. 33.
    Ojima N., Yamashita M., Watabe S. 2005. Quantitative mRNA expression profiling of heat-shock protein families in rainbow trout cells. Biochem. Biophys. Res. Commun. 329, 51–57.PubMedCrossRefGoogle Scholar
  34. 34.
    Boone A.N., Vijayan M.M. 2002. Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: Effects of heat shock and heavy metal exposure. Comp. Biochem. Physiol. C. 132, 223–233.Google Scholar
  35. 35.
    Piano A., Asirelli C., Caselli F., Fabbri E. 2002. Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell Stress Chap. 7, 250–257.CrossRefGoogle Scholar
  36. 36.
    Geraci F., Pinsino A., Turturici G., Savona R., Giudice G., Sconzo G. 2004. Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s. Biochem. Biophys. Res. Commun. 322, 873–877.PubMedCrossRefGoogle Scholar
  37. 37.
    Piano A., Valbonesi P., Fabbri E. 2004. Expression of cytoprotective proteins, HSP70 and metallothioneins, in tissues of Ostrea edulis exposed to heat and heavy metals. Cell Stress Chap. 9, 134–142.CrossRefGoogle Scholar
  38. 38.
    Ravaux J., Gaill F., Bris N.L., Sarradin P.M., Jollivet D. 2003. Heat-shock response and temperature resistance in the deep-sea shrimp Rimicaris exoculata. J. Exp. Biol. 206, 2345–2354.PubMedCrossRefGoogle Scholar
  39. 39.
    Guo Z.Y., Jiao C.Z., Xiang J.H. 2004. Heat-shocked protein 70 expression in shrimp Fenneropenaeus chinensis during thermal and immune-challenged stress. Oceanol. Limnol. Sinica. 22, 386–391.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Institute of HydrobiologyJinan UniversityGuangzhouChina

Personalised recommendations