Advertisement

Molecular Biology

, Volume 42, Issue 1, pp 9–19 | Cite as

Circulating DNA in the blood and its application in medical diagnosis

  • S. N. TamkovichEmail author
  • V. V. Vlassov
  • P. P. Laktionov
Reviews

Abstract

Circulating nucleic acids were discovered more than 30 years ago, but did not attract much attention until the past decade. This review summarizes the data on the sources of extracellular DNA circulating in the blood, features of its circulation, and pathways of its removal. The possibility of using circulating DNA in medical diagnosis is discussed.

Key words

circulating DNA apoptosis necrosis active secretion nucleases early noninvasive diagnosis of cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson S.M., Grosshans H., Shingara J., et al. 2005. RAS is regulated by the let-7 microRNA family. Cell. 120, 635–647.CrossRefPubMedGoogle Scholar
  2. 2.
    Rykova E.Yu., Laktioniv P.P., Vlassov V.V. 2001. Activating effect of DNA on the immune system. Usp. Sovrem. Biol. 121, 174–185.Google Scholar
  3. 3.
    Yan Z., Lambert N.C., Ostensen M., et al. 2006. Prospective study of fetal DNA in serum and disease activity during pregnancy in women with inflammatory arthritis. Arthritis Rheum. 54, 2069–2073.CrossRefPubMedGoogle Scholar
  4. 4.
    Tsukumo S., Yasutomo K. 2004. DNase I in pathogenesis of systemic lupus erythematosus. Clin. Immunol. 113, 14–18.CrossRefPubMedGoogle Scholar
  5. 5.
    Ngan R.K.C., Yip T.T.C., Cheng W.W., et al. 2004. Clinical role of circulating Epstein-Barr virus DNA as a tumor marker in lymphoepithelioma-like carcinoma of the lung. Ann. N.Y. Acad. Sci. 1022, 263–270.CrossRefPubMedGoogle Scholar
  6. 6.
    Fedchenko V.I., Gur’ev S.O., Semenova N.V. 2005. Noninvasive prenatal sex diagnosis by means of PCR. Biomed. Khim. 51, 527–535.PubMedGoogle Scholar
  7. 7.
    Hacker H.J., Zhang W., Tokus M., Bock T., Schroder C.H. 2004. Patterns of circulating hepatitis B virus serum nucleic acids during lamivudine therapy. Ann. N.Y. Acad. Sci. 1022, 271–281.CrossRefPubMedGoogle Scholar
  8. 8.
    Tamkovish S.N., Laktionov P.P., Rykova E. Yu., et al. 2005. The level of extracellular nucleic acids in the blood plasma of healthy donors and patients with breast tumors. Byull. Eksp. Biol. Med. 139, 462–464.Google Scholar
  9. 9.
    Bykov V.L. 1998. Tsitologiya i obshchaya gistologiya (Cytology and General Histology). St. Petersburg: Sotis.Google Scholar
  10. 10.
    Rainer T.H., Lo Y.M., Chan L.Y., et al. 2001. Derivation of a prediction rule for posttraumatic organ failure using plasma DNA and other variables. Ann. N.Y. Acad. Sci. 945, 211–220.CrossRefPubMedGoogle Scholar
  11. 11.
    Jahr S., Hentze H., Englisch S., et al. 2001. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665.PubMedGoogle Scholar
  12. 12.
    Lichtenstein A.V., Potapova G.I. 2003. Genetic defects and markers of tumor growth. Mol. Biol. 37, 181–193.CrossRefGoogle Scholar
  13. 13.
    Nagata S. 2000. Apoptotic DNA fragmentation. Exp. Cell. Res. 256, 12–28.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu X., Li P., Widlak P., Zou H., et al. 1998. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. USA. 95, 8461–8466.CrossRefPubMedGoogle Scholar
  15. 15.
    Bell D.A., Morrison B., van den Bygaart P. 1990. Immunogenic DNA-related factors: Nucleosomes spontaneously released from normal murine lymphoid cells stimulate proliferation and immunoglobulin synthesis of normal mouse lymphocytes. J. Clin. Invest. 85, 1487–1496.CrossRefPubMedGoogle Scholar
  16. 16.
    Holdenrieder S., Stieber P., Chan L.Y.S., et al. 2005. Cell-free DNA in serum and plasma: Comparison of ELISA and quantitative PCR. Clin. Chem. 51, 1544–1546.CrossRefPubMedGoogle Scholar
  17. 17.
    Deligezer U., Yaman F., Erten N., Dalay N. 2003. Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients. Clin. Chim. Acta. 335, 89–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Lichtenstein A.V., Melkovyan H.S., Tomei L.D., Umansky S.R. 2001. Circulating nucleic acids and apoptosis. Ann. N.Y. Acad. Sci. 945, 239–249.CrossRefPubMedGoogle Scholar
  19. 19.
    Laktionov P.P., Tamkovich S.N., Rykova E.Y., et al. 2004. Extracellular circulating nucleic acids in human plasma in health and disease. Nucleosides Nucleotides Nucleic Acids. 23, 879–883.CrossRefPubMedGoogle Scholar
  20. 20.
    Lam N.Y., Rainer T.H., Chan L.Y., Joynt G.M., Lo Y.M. 2003. Time course of early and late changes in plasma DNA in trauma patients. Clin. Chem. 49, 1286–1291.CrossRefPubMedGoogle Scholar
  21. 21.
    Skvortsova T.E., Rykova E.Y., Tamkovich S.N., et al. 2006. Cell-free and cell-bound circulating DNA in breast tumors: DNA quantification and analysis of tumor-related gene methylation. Br. J. Cancer. 94, 1492–1495.CrossRefPubMedGoogle Scholar
  22. 22.
    Morozkin E.S., Laktionov P.P., Rykova E.Y., Vlassov V.V. 2004. Extracellular nucleic acids in cultures of long-term cultivated eukaryotic cells. Ann. N.Y. Acad. Sci. 1022, 244–249.CrossRefPubMedGoogle Scholar
  23. 23.
    Rogers J.C., Boldt D., Kornfeld S., Skinner A., Valeri C.R. 1972. Excretion of deoxyribonucleic acid by lymphocytes stimulated with phytohemagglutinin or antigen. Proc. Natl. Acad. Sci. USA. 69, 1685–1689.CrossRefPubMedGoogle Scholar
  24. 24.
    Anker P., Stroun M., Maurice P.A. 1975. Spontaneous release of DNA by human blood lymphoctyes as shown in an in vitro system. Cancer Res. 35, 2375–2382.PubMedGoogle Scholar
  25. 25.
    Stroun M., Lyautey J., Lederrey C., Olson-Sand A., Anker P. 2001. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta. 313, 139–142.CrossRefPubMedGoogle Scholar
  26. 26.
    Merola R., Mottolese M., Orlandi G., et al. 2006. Analysis of aneusomy level and HER-2 gene copy number and their effect on amplification rate in breast cancer specimens read as 2+ in immunohistochemical analysis. Eur. J. Cancer. 42, 1501–1506.CrossRefPubMedGoogle Scholar
  27. 27.
    Tsiambas E., Karameris A., Dervenis C., et al. 2006. HER2/neu expression and gene alterations in pancreatic ductal adenocarcinoma: A comparative immunohistochemistry and chromogenic in situ hybridization study based on tissue microarrays and computerized image analysis. J. Pancreas. 7, 283–294.Google Scholar
  28. 28.
    Combaret V., Audoynaud C., Iacono I., et al. 2002. Circulating MYCN DNA as a tumor-specific marker in neuroblastoma patients. Cancer Res. 62, 3646–3648.PubMedGoogle Scholar
  29. 29.
    Shaw J.-P., Kent K., Bird J., Fishback J., Froehler B. 1991. Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res. 19, 747–750.CrossRefPubMedGoogle Scholar
  30. 30.
    Halicka H.D., Bedner E., Darzynkiewicz Z. 2000. Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp. Cell Res. 260, 248–256.CrossRefPubMedGoogle Scholar
  31. 31.
    Ng E.K., Tsui N.B., Lam N.Y., et al. 2002. Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin. Chem. 48, 1212–1217.PubMedGoogle Scholar
  32. 32.
    Holdenrieder S., Stieber P. 2004. Therapy control in oncology by circulating nucleosomes. Ann. N.Y. Acad. Sci. 1022, 211–216.CrossRefPubMedGoogle Scholar
  33. 33.
    Butler P.J., Tennent G.A., Pepys M.B. 1990. Pentraxin-chromatin interactions: Serum amyloid P component specifically displaces H1-type histones and solubilizes native long chromatin. J. Exp. Med. 172, 13–18.CrossRefPubMedGoogle Scholar
  34. 34.
    Egorova V.A., Blinov M.N. 1993. DNA-binding serum proteins in hemoblastosis. Vopr. Med. Khim. 39, 36–38.PubMedGoogle Scholar
  35. 35.
    Gerasimova Y.V., Alekseyeva I.V., Bogdanova T.G., et al. 2006. Affinity separation of polyribonucleotide-binding human blood proteins. Bioorg. Med. Chem. Lett. 16, 5526–5529.CrossRefPubMedGoogle Scholar
  36. 36.
    Pautova L.V., Rykova E.Yu., Laktionov P.P., Vlasov V.V. 1996. Analysis of the interaction of polyvalent antibodies with nucleic acids using alkylating oligonucleotide derivatives. Mol. Biol. 30, 941–950.Google Scholar
  37. 37.
    Laktionov P.P., Bryksin A.V., Rykova E.Yu., Vlassov V.V. 1999. In vivo analysis of oligonucleotide-protein interactions in the blood. Byull. Eksp. Biol. Med. 127, 654–657.CrossRefGoogle Scholar
  38. 38.
    Van Schravendijk M.R., Dwek R.A. 1982. Interaction of C1q with DNA. Mol. Immunol. 19, 1179–1187.CrossRefPubMedGoogle Scholar
  39. 39.
    Hoch S.O. 1982. DNA-binding domains of fibronectin probed using Western blots. Biochem. Biophys. Res. Commun. 106, 1353–1358.CrossRefPubMedGoogle Scholar
  40. 40.
    Laktionov P.P., Rykova E., Krepkii D.V., Bryksin A.V., Vlassov V.V. 1997. Interactions of oligonucleotides with proteins of barrier fluids. Biokhimiya. 62, 716–723.Google Scholar
  41. 41.
    Zou S., Magura C.E., Hurley W.L. 1992. Heparin-binding properties of lactoferrin and lysozyme. Comp. Biochem. Physiol. B. 103, 889–895.CrossRefPubMedGoogle Scholar
  42. 42.
    Belyaev N.D., Budker V.G., Gorokhova O.E., Sokolov A.V., 1988. Ig2+-dependent interaction of DNA with eukaryotic cells. Mol. Biol. 22, 1667–1672.Google Scholar
  43. 43.
    Budker V.G., Godovikov A.A., Naumova L.P., Slepneva I.A. 1980. Interaction of polynucleotides with natural and model membranes. Nucleic Acids Res. 8, 2499–2515.CrossRefPubMedGoogle Scholar
  44. 44.
    Tamkovich S.N., Bryzgunova O.E., Rykova E.Y., et al. 2005. Circulating nucleic acids in blood of healthy male and female donors. Clin. Chem. 51, 1317–1319.CrossRefPubMedGoogle Scholar
  45. 45.
    Chelobanov B.P., Laktionov P.P., Vlassov V.V. 2006. Proteins involved in nucleic acid binding and uptake by cells. Biokhimiya. 71, 725–741.Google Scholar
  46. 46.
    Gasparro F.P., Dall’Amico R., O’Malley M., Heald P.W., Edelson R.L. 1990. Cell membrane DNA: A new target for psoralen photoadduct formation. Photochem. Photobiol. 52, 315–321.CrossRefPubMedGoogle Scholar
  47. 47.
    Laktionov P.P., Dazard J.E., Vives E., et al. 1999. Characterization of membrane oligonucleotide-binding proteins and oligonucleotide uptake in keratinocytes. Nucleic Acids Res. 27, 2315–2324.CrossRefPubMedGoogle Scholar
  48. 48.
    Laktionov P.P., Rykova E., Vlassov V.V. 1997. Involvement of surface immunoglobulins in lymphocyte activation under the effect of plasmid DNA. Mol. Biol. 31, 506–514.Google Scholar
  49. 49.
    Huss R. 1988. A 42 kDa erythrocyte surface membrane protein with binding capacity to polynucleotides shows functional lack in systemic lupus erythematosus. Immunobiology. 178, 141–142.Google Scholar
  50. 50.
    Dorsch C.A. 1981. Binding of single-strand DNA to human platelets. Thromb. Res. 24, 119–129.CrossRefPubMedGoogle Scholar
  51. 51.
    Geselowitz D.A., Neckers L.M. 1995. Bovine serum albumin is a major oligonucleotide-binding protein found on the surface of cultured cells. Antisense Res. Dev. 5, 213–217.PubMedGoogle Scholar
  52. 52.
    Laktionov P.P., Tamkovich S.N., Rykova E.Y., et al. 2004. Free and cell surface bound nucleic acids in blood of healthy donors and breast cancer patients. Ann. N.Y. Acad. Sci. 1022, 221–227.CrossRefPubMedGoogle Scholar
  53. 53.
    Cherepanova A.V., Tamkovich S.N., Vlassov V.V., Laktionov P.P. 2007. Deoxyribonuclease activity in blood in health and diseases. Biochemistry (Moscow). Suppl. Ser. B: Biomed. Chem. 1, 320–330.Google Scholar
  54. 54.
    Klishko E.V., Kondakova I.V., Choinozov E.L. 2003. Matrix metalloproteins in carcinogenesis. Sib. Onkol. Zh. 2, 63–70.Google Scholar
  55. 55.
    Tamkovich S.N., Cherepanova A.V., Kolesnikova E.V., et al. 2006. Circulating DNA and DNAse activity in human blood. Ann. N.Y. Acad. Sci. 1075, 191–196.CrossRefPubMedGoogle Scholar
  56. 56.
    Baranovskii A.G., Buneva V.N., Nevinskii G.A. 2004. Human deoxyribonucleases. Biokhimiya. 69, 725–742.Google Scholar
  57. 57.
    Pan C.Q., Sinicropi D.V., Lazarus R.A. 2001. Engineered properties and assays for human DNase I mutants. Methods Mol. Biol. 160, 309–321.PubMedGoogle Scholar
  58. 58.
    Dewez B., Lans M., Allaeys V., et al. 1993. Serum alkaline deoxyribonuclease activity, a sensitive marker for the therapeutic monitoring of cancer patients: Methodological aspects. Eur. J. Clin. Chem. Clin. Biochem. 31, 793–797.PubMedGoogle Scholar
  59. 59.
    Yasuda T., Takeshita H., Nakazato E., et al. 1998. Activity measurement for deoxyribonucleases I and II with picogram sensitivity based on DNA/SYBR Green I fluorescence. Anal. Biochem. 255, 274–276.CrossRefPubMedGoogle Scholar
  60. 60.
    Abasheva G.K., Gubko A.A., Petrusenko G.P., Prasmytskii O.T. 1994. Nuclease activities in multiple trauma. Vopr. Med. Khim. 40, 30–31.PubMedGoogle Scholar
  61. 61.
    Frittitta L., Camastra S., Baratta R., et al. 1999. A soluble PC-1 circulates in human plasma: Relationship with insulin resistance and associated abnormalities. J. Clin. Endocrinol. Metab. 84, 3620–3625.CrossRefPubMedGoogle Scholar
  62. 62.
    Kanyshkova T.G., Babina S.E., Semenov D.V., et al. 2003. Multiple enzymic activities of human milk lactoferrin. Eur. J. Biochem. 270, 3353–3361.CrossRefPubMedGoogle Scholar
  63. 63.
    Odintsova E.S., Kharitonova M.A., Baranovskii A.G., et al. 2006. DNA-hydrolyzing IgG antibodies from the blood of patients with the acquired immunodeficiency syndrome. Mol. Biol. 40, 857–864.CrossRefGoogle Scholar
  64. 64.
    Zendegui J.G., Vasquez K.M., Tinsley J.H., Kessler D.J., Hogan M.E. 1992. In vivo stability and kinetics of absorption and disposition of 3′ phosphopropyl amine oligonucleotides. Nucleic Acids Res. 20, 307–314.CrossRefPubMedGoogle Scholar
  65. 65.
    Emlen W., Mannik M. 1978. Kinetics and mechanisms for removal of circulating single-stranded DNA in mice. J. Exp. Med. 147, 684–699.CrossRefPubMedGoogle Scholar
  66. 66.
    Gauthier V.J., Tyler L.N., Mannik M. 1996. Blood clearance kinetics and liver uptake of mononucleosomes in mice. J. Immunol. 156, 1151–1156.PubMedGoogle Scholar
  67. 67.
    Agrawal S., Temsamani J., Tang J. Y. 1991. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. USA. 88, 7595–7599.CrossRefPubMedGoogle Scholar
  68. 68.
    Tsumita T., Iwanaga M. 1963. Fate of injected deoxyribonucleic acid in mice. Nature. 198, 1088–1089.CrossRefPubMedGoogle Scholar
  69. 69.
    Lo Y.M., Zhang J., Leung T.M., et al. 1999. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 64, 218–224.CrossRefPubMedGoogle Scholar
  70. 70.
    Bryzgunova O.E., Skvortsova T.E., Kolesnikova E.V., et al. 2006. Isolation and comparative study of cell-free nucleic acids from human urine. Ann. N.Y. Acad. Sci. 1075, 334–340.CrossRefPubMedGoogle Scholar
  71. 71.
    Steinman C.R. 1975. Free DNA in serum and plasma from normal adults. J. Clin. Invest. 56, 512–515.CrossRefPubMedGoogle Scholar
  72. 72.
    Raptis L., Menard H. 1980. Quantitation and characterization of plasma DNA in normals and patients with systemic lupus erythematosus. J. Clin. Invest. 66, 1391–1399.CrossRefPubMedGoogle Scholar
  73. 73.
    Shapiro B., Chakrabarty M., Cohn E.M., Leon S.A. 1983. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer. 51, 2116–2120.CrossRefPubMedGoogle Scholar
  74. 74.
    Stroun M., Anker P., Maurice P., et al. 1989. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 46, 318–322.CrossRefPubMedGoogle Scholar
  75. 75.
    Silva J.M., Dominguez G., Garcia J.M., et al. 1999. Presence of tumor DNA in plasma of breast cancer patients: Clinicopathological correlations. Cancer Res. 59, 3251–3256.PubMedGoogle Scholar
  76. 76.
    Shevchuk N.A. 2001. Time-allowed immunofluorescent analysis for DNA and tests for DNA content in human plasma. Vopr. Med. Khim. 47, 439–448.PubMedGoogle Scholar
  77. 77.
    Sozzi G., Conte D., Mariani L., et al. 2001. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res. 61, 4675–4678.PubMedGoogle Scholar
  78. 78.
    Wu T.L., Zhang D., Chia J.H., et al. 2002. Cell-free DNA: Measurement in various carcinomas and establishment of normal reference range. Clin. Chim. Acta. 321, 77–87.CrossRefPubMedGoogle Scholar
  79. 79.
    Chang H.W., Lee S.M., Goodman S.N., et al. 2002. Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. J. Natl. Cancer Inst. 94, 1697–1703.PubMedGoogle Scholar
  80. 80.
    Wong T.S., Kwong D.L., Sham J.S., et al. 2004. Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clin. Cancer Res. 10, 2401–2406.CrossRefPubMedGoogle Scholar
  81. 81.
    Vasilyeva I.N. 2001. Low-molecular-weight DNA in blood plasma as an index of the influence of ionizing radiation. Ann. N. Y. Acad. Sci. 945, 221–228.CrossRefPubMedGoogle Scholar
  82. 82.
    Lam N.Y., Rainer T.H., Chan L.Y., Joynt G.M., Lo Y.M. 2003. Time course of early and late changes in plasma DNA in trauma patients. Clin. Chem. 49, 1286–1291.CrossRefPubMedGoogle Scholar
  83. 83.
    Steinman C.R. 1979. Circulating DNA in systemic lupus erythematosus. Association with central nervous system involvement and systemic vasculitis. Am. J. Med. 67, 429–435.CrossRefPubMedGoogle Scholar
  84. 84.
    Anker P., Mulcahy H., Stroun M. 2003. Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: Time for large-scale clinical studies. Int. J. Cancer. 103, 149–152.CrossRefPubMedGoogle Scholar
  85. 85.
    Tamkovich S.N., Bryzgunova O.E., Rykova E.Yu., et al. 2005. Circulating nucleic acids in the blood of patients with stomach and colon cancer. Biomed. Khim. 51, 321–328.PubMedGoogle Scholar
  86. 86.
    Lo Y.M., Leung S.F., Chan L.Y., et al. 2000. Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma. Cancer Res. 60, 2351–2355.PubMedGoogle Scholar
  87. 87.
    Fiegl H., Millinger S., Mueller-Holzner E., et al. 2005. Circulating tumor-specific DNA: A marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res. 65, 1141–1145.CrossRefPubMedGoogle Scholar
  88. 88.
    Tamkovich S.N., Laktionov P.P., Bryzgunova O.E., et al. 2005. The level of extracellular nucleic acids associated with the surface of blood cells in diagnosis of breast cancer. Mol. Med. 2, 46–50.Google Scholar
  89. 89.
    Goessl C., Krause H., Muller M., et al. 2000. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res. 60, 5941–5945.PubMedGoogle Scholar
  90. 90.
    Frattini M., Gallino G., Signoroni S., et al. 2006. Quantitative analysis of plasma DNA in colorectal cancer patients. Ann. N. Y. Acad. Sci. 1075, 185–190.CrossRefPubMedGoogle Scholar
  91. 91.
    Muller I., Urban K., Pantel K., Schwarzenbach H. 2006. Comparison of genetic alterations detected in circulating microsatellite DNA in blood plasma samples of patients with prostate cancer and benign prostatic hyperplasia. Ann. N.Y. Acad. Sci. 1075, 222–229.CrossRefPubMedGoogle Scholar
  92. 92.
    Chen X.Q., Stroun M., Magnenat J.L., et al. 1996. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat. Med. 2, 1033–1035.CrossRefPubMedGoogle Scholar
  93. 93.
    Sanchez-Cespedes M., Esteller M., Wu L., et al. 2000. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 60, 892–895.PubMedGoogle Scholar
  94. 94.
    Xue X., Zhu Y.M., Woll P.J. 2006. Circulating DNA and lung cancer. Ann. N.Y. Acad. Sci. 1075, 154–164.CrossRefPubMedGoogle Scholar
  95. 95.
    Sorenson G.D., Pribish D.M., Valone F.H., et al. 1994. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomarkers Prev. 3, 67–71.PubMedGoogle Scholar
  96. 96.
    Lichtenstein A.V., Kisseleva N.P. 2001. DNA methylation and carcinogenesis. Biokhimiya. 66, 293–317.Google Scholar
  97. 97.
    Goessl C., Muller M., Heicappell R., Krause H., Miller K. 2001. DNA-based detection of prostate cancer in blood, urine, and ejaculates. Ann. N.Y. Acad. Sci. 945, 51–58.CrossRefPubMedGoogle Scholar
  98. 98.
    Wong T., Kwong D., Sham J., et al. 2004. Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clin. Cancer Res. 10, 2401–2406.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. N. Tamkovich
    • 1
    • 2
    Email author
  • V. V. Vlassov
    • 1
  • P. P. Laktionov
    • 1
  1. 1.Institute of Chemical Biology and Fundamental Medicine, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations