Molecular Biology

, Volume 41, Issue 6, pp 886–893

Homology-dependent inactivation of LTR retrotransposons in Aspergillus fumigatus and A. nidulans genomes

Genomics. Transcriptomics. Proteomics

Abstract

The repeat-induced point mutation mechanism (RIP) is the most intriguing among the known mechanisms of homology-dependent gene inactivation (silencing) because of its ability to produce irreversible mutations in repetitive DNA sequences. Discovered for the first time in Neurospora crassa, RIP is characterized by C:G to T:A transitions in duplicated sequences. The mechanisms and range of occurrence of RIP are still poorly understood. Mobile elements, including retrotransposons, are a common target for the processes that lead to homology-dependent silencing because of their ability to propagate themselves. Comparative analysis of LTR retrotransposons was performed throughout the genomes of two ascomycetes, Aspergillus fumigatus and A. nidulans. “De-RIP” retroelements were reconstructed on the basis of several copies. CpG, CpA, and TpG sites, which are potential targets for mutagenesis, were found at a much lower frequency in mobile elements than in structural genes. The dinucleotide targets of the two species are affected by RIP at different frequencies: mutagenesis occurs at both CpG and CpA sites in A. fumigatus and is confined to CpG dinucleotides in A. nidulans. This work provides a theoretical background for planning the experimental investigation of RIP inactivation in aspergilli.

Key words

Aspergillus LTR retrotransposons in silico analysis mutagenesis RIP inactivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bird A.P. 1986. CpG-rich islands and the function of DNA methylation. Nature. 321, 209–213.PubMedCrossRefGoogle Scholar
  2. 2.
    Gowher H., Leismann O., Jeltsch A. 2000. DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J. 19, 6918–6923.PubMedCrossRefGoogle Scholar
  3. 3.
    Vanyushin B.F. 2006. DNA methylation in plants. Curr. Top. Microbiol. Immunol. 301, 67–122.PubMedGoogle Scholar
  4. 4.
    Doerfler W. 1983. DNA methylation and gene activity. Annu. Rev. Biochem. 52, 93–124.PubMedCrossRefGoogle Scholar
  5. 5.
    Norris D.P., Patel D., Kay G.F., Penny G.D., Brockdorff N., Sheardown S.A., Rastan S. 1994. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell. 77, 41–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Lloyd V. 2000. Parental imprinting in Drosophila. Genetica. 109, 35–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Busslinger M., Hurst J., Flavell R.A. 1983. DNA methylation and the regulation of globin gene expression. Cell. 34, 197–206.PubMedCrossRefGoogle Scholar
  8. 8.
    Li E., Bestor T.H., Jaenisch R. 1992. Targed mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69, 915–926.PubMedCrossRefGoogle Scholar
  9. 9.
    Baylin S.B., Herman J.G., Graff J.R., Vertino P.M., Issa J.-P. 1998. Alterations in DNA methylation: A fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196.PubMedCrossRefGoogle Scholar
  10. 10.
    Bird A.P. 1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 8, 1499–1504.PubMedCrossRefGoogle Scholar
  11. 11.
    Kricker M.C., Drake J.W., Radman M. 1992. Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc. Natl. Acad. Sci. USA. 89, 1075–1079.PubMedCrossRefGoogle Scholar
  12. 12.
    Duncan B.K., Miller J.H. 1980. Mutagenic deamination of cytosine residues in DNA. Nature. 287, 560–561.PubMedCrossRefGoogle Scholar
  13. 13.
    Matzke M.A., Matzke A.J. 1998. Epigenetic silencing of plant transgenes as a consequence of diverse cellular defense responses. Cell. Mol. Life Sci. 54, 94–103.PubMedCrossRefGoogle Scholar
  14. 14.
    Meyer P., Heidmann I. 1994. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: An indication for specific recognition of foreign DNA in transgenic plants. Mol. Gen. Genet. 243, 390–399.PubMedGoogle Scholar
  15. 15.
    Galagan J.E., Selker E.U. 2004. RIP: The evolutionary cost of genome defense. Trends Genet. 20, 417–423.PubMedCrossRefGoogle Scholar
  16. 16.
    Faugeron G. 2000. Diversity of homology-dependent gene silencing strategies in fungi. Curr. Opin. Microbiol. 3, 144–148.PubMedCrossRefGoogle Scholar
  17. 17.
    Selker E.U. 1999. Epigenetic phenomena in filamentous fungi: Useful paradigms or repeated-induced confusion. Trends Genet. 13, 296–301.CrossRefGoogle Scholar
  18. 18.
    Colot V., Rossingol J.-L. 1999. Eukaryotic DNA methylation as an evolutionary device. BioEssays. 21, 402–411.PubMedCrossRefGoogle Scholar
  19. 19.
    Kidwell M.G., Lisch D.R. 2001. Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution. 55, 1–24.PubMedGoogle Scholar
  20. 20.
    Kidwell M.G. 2002. Transposable elements and the evolution of genome size in eukaryotes. Genetica. 115, 49–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Hua-Van A., Le Rouzic A., Maisonhaute C., Capy P. 2005. Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet. Genome Res. 110, 426–440.PubMedCrossRefGoogle Scholar
  22. 22.
    Novikova O., Fet B., Blinov A. 2007. LOR retrotransposons in the Aspergillus fumigatus and A. nidulans genomes. Mol. Biol. 41, 756–763.CrossRefGoogle Scholar
  23. 23.
    Neuveglise C., Sarfati J., Latge J.-P., Paris S. 1996. Afut1, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res. 24, 1428–1434.PubMedCrossRefGoogle Scholar
  24. 24.
    Paris S., Latge J.P. 2001. Afut2, a new family of degenerate gypsy-like retrotransposon from Aspergillus fumigatus. Med. Mycol. 39, 195–198.PubMedCrossRefGoogle Scholar
  25. 25.
    Nielsen M.L., Hermansen T.D., Aleksenko A. 2001. A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons. Mol. Genet. Genomics. 265, 883–887.PubMedCrossRefGoogle Scholar
  26. 26.
    Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.PubMedCrossRefGoogle Scholar
  27. 27.
    Kricker M.C., Drake J.W., Radman M. 1992. Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc. Natl. Acad. Sci. USA. 89, 1075–1079.PubMedCrossRefGoogle Scholar
  28. 28.
    Cambareri E.B., Aisner R., Carbon J. 1998. Structure of the chromosome VII centromere region in Neurospora crassa: Degenerate transposons and simple repeats. Mol. Cell. Biol. 18, 5465–5477.PubMedGoogle Scholar
  29. 29.
    Daboussi M.J., Daviere J.M., Graziani S., Langin T. 2002. Evolution of the Fot1 transposons in the genus Fusarium: Discontinuous distribution and epigenetic inactivation. Mol. Biol. Evol. 19, 510–520.PubMedGoogle Scholar
  30. 30.
    Aleksenko A., Gems D., Clutterbuck J. 1996. Multiple copies of MATE elements support autonomous plasmid replication in Aspergillus nidulans. Mol. Microbiol. 20, 427–434.PubMedCrossRefGoogle Scholar
  31. 31.
    Geiser D.M., Timberlake W.E., Arnold M.L. 1996. Loss of meiosis in Aspergillus. Mol. Biol. Evol. 13, 809–817.PubMedGoogle Scholar
  32. 32.
    Poggeler S. 2002. Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr Genet. 42, 153–160.PubMedCrossRefGoogle Scholar
  33. 33.
    Varga J. 2003. Mating type gene homologues in Aspergillus fumigatus. Microbiology. 149, 816–819.PubMedCrossRefGoogle Scholar
  34. 34.
    Paoletti M., Rydholm C., Schwier E.U., Anderson M.J., Szakacs G., Lutzoni F., Debeaupuis J.P., Latge J.P., Denning D.W., Dyer P.S. 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol. 15, 1242–1248.PubMedCrossRefGoogle Scholar
  35. 35.
    Gow N.A., Brown A.J., Odds F.C. 2000. Candida’ arranged marriage. Science. 289, 256–257.PubMedCrossRefGoogle Scholar
  36. 36.
    Tamame M., Antequera F., Villanueva J.R., Santos T. 1983. High-frequency conversion to a “fluffy” developmental phenotype in Aspergillus spp. by 5-azacytidine treatment: Evidence for involvement of a single nuclear gene. Mol. Cell. Biol. 3, 2287–2297PubMedGoogle Scholar
  37. 37.
    Gowher H., Ehrlich K.C., Jeltsch A. 2001. DNA from Aspergillus flavus contains 5-methylcytosine. FEMS Microbiol. Lett. 205, 151–155.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Marshall UniversityHuntingtonUSA

Personalised recommendations