Molecular Biology

, Volume 41, Issue 3, pp 445–452 | Cite as

Molecular phylogeny of Gastrotricha on the basis of a comparison of the 18S rRNA genes: Rejection of the hypothesis of a relationship between Gastrotricha and Nematoda

  • N. B. Petrov
  • A. N. Pegova
  • O. G. Manylov
  • N. S. Vladychenskaya
  • N. S. Mugue
  • V. V. Aleshin
Genomics. Transcriptomics. Proteomics


Gastrotricha are the small meiobenthic acoelomate worms whose phylogenetic relationships between themselves and other invertebrates remain unclear, despite all attempts to clarify them on the basis of both morphological and molecular analyses. The complete sequences of the 18S rRNA genes (8 new and 7 known) were analyzed in 15 Gastrotricha species to test different hypotheses on the phylogeny of this taxon and to determine the reasons for the contradictions in earlier results. The data were analyzed using both maximum likelihood and Bayesian methods. Based on the results, it was assumed that gastrotrichs form a monophyletic group within the Spiralia clade, which also includes Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea, and Lophotrochozoa. Statistical tests rejected a phylogenetic hypotheses considering Gastrotricha to be closely related to Nematoda and other Ecdysozoa or placing them at the base of the Bilateria tree, close to Acoela or Nemertodermatida. Among gastrotrichs, species belonging to the orders Chaetonotida and Macrodasyida form two well-supported clades. The analysis confirmed monophyly of the families Chaetonotidae and Xenotrichulidae from the order Chaetonida, as well as the families Turbanellidae and Thaumastodermatidae from the order Macrodasyida. Lepidodasyidae is a polyphyletic family, because the genus Mesodasys forms a sister group for Turbanellidae; genus Cephalodasys forms a separate branch at the base of Macrodasyida; and Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To confirm these conclusions and to get an authentic view of the phylogeny of Gastrotricha, it is necessary to study more Gastrotricha species and to analyze some other genes.

Key words

18S rRNA molecular phylogeny Bilateria Protostomia Spiralia Ecdysozoa Gastrotricha Gnathostomulida Nematoda 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boaden P.J.S. 1985. Why is a gastrotrich? In: The Origins and Relationships of Lower Invertebrates. Eds. Conway M.S., George J.D., Gibson R., Platt H.M. Oxford: Clarendon Press, pp. 248–260.Google Scholar
  2. 2.
    Lorenzen S. 1985. Phylogenetic aspects of pseudocoelomate evolution. In: The Origins and Relationships of Lower Invertebrates. Eds. Conway M.S., George J.D., Gibson R., Platt H.M. Oxford: Clarendon Press, pp. 210–223.Google Scholar
  3. 3.
    Ruppert E.E. 1991. Gastrotricha. In: Microscopic Anatomy of Invertebrates, vol. 4: Aschelminthes. Eds. Harrison F.W., Ruppert E.E. N.Y.: Wiley-Liss, pp. 41–109.Google Scholar
  4. 4.
    Wallace R.L., Ricci C., Melone G. 1996. A cladistic analysis of pseudocoelomate (aschelminth) morphology. Invertebr. Biol. 115, 104–112.CrossRefGoogle Scholar
  5. 5.
    Nielsen C. 2001. Animal Evolution: Interrelationships of the Living Phyla. Oxford: Oxford Univ. Press.Google Scholar
  6. 6.
    Sørensen M.V., Funch P., Willersslev E., Hansen A.J., Olesen J. 2000. On the phylogeny of the Metazoa in light of Cycliophora and Micrognathozoa. Zool. Anz. 239, 297–318.Google Scholar
  7. 7.
    Peterson K.J., Eernisse D.J. 2001. Animal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rRNA sequences. Evol. Dev. 3, 170–205.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmidt-Rhaesa A. 2002. Two dimensions of biodiversity research exemplified by Nemathomorpha and Gastrotricha. Integr. Comp. Biol. 42, 633–640.CrossRefGoogle Scholar
  9. 9.
    Garey J.R., Schmidt-Rhaesa A. 1998. The essential role of “minor” phyla in molecular studies of animal evolution. Am. Zool. 38, 907–917.Google Scholar
  10. 10.
    Cavalier-Smith T. 1998. A revised six-kingdom system of life. Biol. Rev. 73, 203–266.PubMedCrossRefGoogle Scholar
  11. 11.
    Winnepenninckx B., Backeljau T., Mackey L.Y., Brooks J.M., De Wachter R., Kumar S., Garey J.R. 1995. 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol. Biol. Evol. 12, 1132–1137.PubMedGoogle Scholar
  12. 12.
    Giribet G., Distel D.L., Polz M., Sterrer W., Wheeler W.C. 2000. Triploblastic relationships with emphasis on the Acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes and Chaetognatha: A combined approach of 18S rDNA sequences and morphology. Syst. Biol. 49, 539–562.PubMedCrossRefGoogle Scholar
  13. 13.
    Giribet G. 2002. Current advances in the phylogenetic reconstruction of metazoan evolution. A paradigm for the Cambrian explosion? Mol. Phyl. Evol. 24, 345–357.CrossRefGoogle Scholar
  14. 14.
    Wirz A., Pucciarelli S., Micelli C., Tongiorgi P., Balsamo M. 1999. Novelty in phylogeny of Gastrotricha: Evidence from 18S rRNA gene. Mol. Phyl. Evol. 13, 314–318.CrossRefGoogle Scholar
  15. 15.
    Todaro M.A., Littlewood D.T.J., Balsamo M., Herniou E.A., Cassanelli S., Manicardi G., Wirz A., Tongiorgi P. 2003. The interrelationships of the Gastrotricha using nuclear small rRNA subunit sequence data, with an interpretation based on morphology. Zool. Anz. 242, 145–156.CrossRefGoogle Scholar
  16. 16.
    Dewell R.A. 2000. Colonial origin for Metazoa: Major morphological transition and the origin of bilaterian complexity. J. Morphol. 243, 35–74.CrossRefGoogle Scholar
  17. 17.
    Ruppert E.E. 1982. Comparative ultrastructure of the gastrotrich pharynx and the evolution of myoepthelial foreguts in Aschelminthes. Zoomorphology. 99, 181–220.CrossRefGoogle Scholar
  18. 18.
    Hochberg R., Litvaitis M.K. 2000. Phylogeny of Gastrotricha: A morphology-based framework of gastrotrich relationships. Biol. Bull. 198, 299–305.PubMedCrossRefGoogle Scholar
  19. 19.
    Hochberg R., Litvaitis M.K. 2001. Macrodasyida (Gastrotricha): A cladistic analysis of morphology. Invertebr. Biol. 120, 124–135.CrossRefGoogle Scholar
  20. 20.
    Manylov O.G., Vladychenskaya N.S., Milyutina I.A., Kedrova O.S, Korokhov N.P., Dvoryanchikov G.A., Aleshin V.V., Petrov N.B. 2004. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha). Mol. Phyl. Evol. 30, 850–854.CrossRefGoogle Scholar
  21. 21.
    Floyd R.M., Abebe E., Papert A., Blaxter M.L. 2002. Molecular barcodes for soil nematode identification. Mol. Ecol. 11, 839–850.PubMedCrossRefGoogle Scholar
  22. 22.
    Medlin L., Elwood H.J., Stickel S., Sogin M.L. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 71, 491–499.PubMedCrossRefGoogle Scholar
  23. 23.
    Swofford D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, MA: Sinauer Assoc.Google Scholar
  24. 24.
    Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A., Hahn B.H., Wolinksy S., Bhattacharya T. 2000. Timing the ancestor of the HIV-1 pandemic strains. Science. 288, 1789–1796.PubMedCrossRefGoogle Scholar
  25. 25.
    Huelsenbeck J.P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 17, 754–755.PubMedCrossRefGoogle Scholar
  26. 26.
    Posada D., Crandall K.A. 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics. 14, 817–818.PubMedCrossRefGoogle Scholar
  27. 27.
    Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508.PubMedCrossRefGoogle Scholar
  28. 28.
    Shimodaira H., Hasegawa M. 2001. CONSEL for assessing the confidence of phylogenetic tree selection. Bioinformatics. 17, 1246–1247.PubMedCrossRefGoogle Scholar
  29. 29.
    Aguinaldo A.M., Turbeville J.M., Linford L.S., Rivera M.C., Garey J.R., Raff R., Lake J.A. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature. 387, 489–493.PubMedCrossRefGoogle Scholar
  30. 30.
    Winnepenninckx B., Backeljau T., Kristensen R. 1998. Relation of the new phylum Cycliophora. Nature. 393, 636–638.CrossRefGoogle Scholar
  31. 31.
    Littlewood D.T.J., Telford M.J., Clough K.A., Rohde K. 1998. Gnathostomulida: An enigmatic metazoan phylum from both morphological and molecular perspectives. Mol. Phyl. Evol. 9, 72–79.CrossRefGoogle Scholar
  32. 32.
    Ruiz-Trillo I., Riutort M., Littlewood D.T., Herniou E.A., Baguna J. 1999. Acoel flatworms: Earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science. 283, 1919–1923.PubMedCrossRefGoogle Scholar
  33. 33.
    Zrzavý J., Mihulka S., Kepka P., Bezdék A., Tietz D. 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics. 14, 249–285.Google Scholar
  34. 34.
    Zrzavý J. 2001. The interrelationships of metazoan parasites: A review of phylum-and higher-level hypotheses from recent morphological and molecular phylogenetic analyses. Folia Parasitol. 48, 81–103.PubMedGoogle Scholar
  35. 35.
    Schmidt-Rhaesa A. 1998. Phylogenetic relationships of the Nematomorpha: A discussion of current hypotheses. Zool. Anz. 236, 203–216.Google Scholar
  36. 36.
    Rieger G.E., Rieger R.M. 1977. Comparative fine structure study of the gastrotrich cuticle and aspects of the cuticle evolution within the Aschelminthes. Z. Zool. Syst. Evolutionforsch. 15, 81–124.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • N. B. Petrov
    • 1
  • A. N. Pegova
    • 2
  • O. G. Manylov
    • 3
  • N. S. Vladychenskaya
    • 1
  • N. S. Mugue
    • 4
  • V. V. Aleshin
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  2. 2.International Biotechnological CenterMoscow State UniversityMoscowRussia
  3. 3.Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations