Molecular Biology

, Volume 41, Issue 2, pp 262–277

Structured proteins and proteins with intrinsic disorder

  • I. N. Serdyuk
RNA and Proteins


Until recently, the point of view that the unique tertiary structure is necessary for protein function has prevailed. However, recent data have demonstrated that many cell proteins do not possess such structure in isolation, although displaying a distinct function under physiological conditions. These proteins were named the naturally, or intrinsically, disordered proteins. The fraction of intrinsically disordered regions in such proteins may vary from several amino acid residues to a completely unordered sequence of several tens or even several hundreds of residues. The main distinction of these proteins from structured (globular) proteins is that they have no unique tertiary structure in isolation and acquire it only upon interaction with their partners. The conformation of these proteins in a complex is determined not only by their own amino acid sequence (as is typical of structured, or globular, proteins) but also by the interacting partner. This review discusses the structure-function relationships in structured and intrinsically disordered proteins. The intricateness of this problem and the possible ways to solve it are illustrated by the example of the EF1A elongation factor family.

Key words

structured proteins intrinsically disordered proteins moonlighting proteins elongation factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunker A.K., Lawson D.J., et al. 2001. Intrinsically disordered protein. J. Mol. Graphics Modelling. 19, 26–59.CrossRefGoogle Scholar
  2. 2.
    Uversky V.N., Gillspie J.R., Fink A.L. 2000. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins. 41, 415–427.PubMedCrossRefGoogle Scholar
  3. 3.
    Jeffry C.J. 1999. Moonlighting proteins. Trends Biochem. Sci. 24, 8–11.CrossRefGoogle Scholar
  4. 4.
    Wright P.E., Dyson H.J. 1999. Intrinsically unstructured proteins: Reassembling the protein structure-function paradigm. J. Mol. Biol. 293, 321–331.PubMedCrossRefGoogle Scholar
  5. 5.
    Bogatyreva N.S., Finkelstein A.V., Galzitskaya O.V. 2006. Trend of amino acid compositions of different taxa. J. Bioinf. Comput. Biol. 4, 597–608.CrossRefGoogle Scholar
  6. 6.
    Lemieux U.R., Spohr U. 1994. How Emil Fisher was led to the lock and key concept for enzyme specificity. Adv. Carbohydrate Chem. Biochem. 50, 1–20.Google Scholar
  7. 7.
    Mirsky A.E., Pauling L. 1936. On the structure of native, denaturated, and coagulated proteins. Proc. Natl. Acad. Sci. USA. 22, 439–447.PubMedCrossRefGoogle Scholar
  8. 8.
    Edsall J.T. 1952. Some comments on proteins and protein structure. Proc. R. Soc. London B. 147, 97–113.Google Scholar
  9. 9.
    Anfinsen C.B. 1973. Principles that govern the folding of protein chains. Science. 181, 223–230.PubMedCrossRefGoogle Scholar
  10. 10.
    Kendrew J., Dickerson R., Standberg B., Hart R., Davies D., Philips P., Shore V. 1960. Structure of myoglobin. Nature. 185, 422–428.CrossRefGoogle Scholar
  11. 11.
    Perutz M., Rossmann M., Gullis A., Muirhead H., Will G., North A., 1960. Structure of haemoglobin. Nature. 185, 416–421.CrossRefGoogle Scholar
  12. 12.
    Karush F. 1950. Heterogenity of the binding sites of bovine serum albumin. J. Am. Chem. Soc. 72, 2705–2713.CrossRefGoogle Scholar
  13. 13.
    Koshland D.E., Jr. 1958. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA. 44, 98–104.PubMedCrossRefGoogle Scholar
  14. 14.
    Koshland D.E., Jr. 1994. The key-lock theory and the induced fit theory. Angew. Chem. Int. Ed. Engl. 33, 2375–2378.CrossRefGoogle Scholar
  15. 15.
    Blake C.C., Koenig D.F., et al. 1965. Structure of hen egg-white lysozyme: A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature. 206, 757–761.PubMedCrossRefGoogle Scholar
  16. 16.
    McDonald R.C., Steitz T.A., Engelman D.M. 1979. Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry. 18, 338–342.PubMedCrossRefGoogle Scholar
  17. 17.
    Kjeldgaard M., Nissen P., Thirup S., Nyborg J. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1, 35–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Calmettes P., Roux B., Durand D., Desmadril M., Smith J.C. 1993. Configurational distribution of denaturated phosphoglycerate kinase. J. Mol. Biol. 231, 840–848.PubMedCrossRefGoogle Scholar
  19. 19.
    Hinck A.P., Markus M.A., Huang S., Grzesiek S., Kustonovich I., Draper D.E., Torchia D.A. 1997. The RNA binding domain of ribosomal protein L11: Three-dimensional structure of the RNA-bound form of the protein and its interaction with 23S rRNA. J. Mol. Biol. 274, 101–113.PubMedCrossRefGoogle Scholar
  20. 20.
    Kissinger C.R., Parge H.E., et al. 1995. Crystal structure of human calcineurin and the human FKBP12-FK506-cacineurin complex. Nature. 378, 641–644.PubMedCrossRefGoogle Scholar
  21. 21.
    Wutrich K. 1998. The second millennium—in to the third millennium. Nature Struct. Biol. 5, 492–495.CrossRefGoogle Scholar
  22. 22.
    Lee L., Stollar E., et al. 2001. Expression of the Oct-1 transcription factor and characterization of its interactions with the Bob1 coactivator. Biochemistry. 40, 6580–6588.PubMedCrossRefGoogle Scholar
  23. 23.
    Tanford C., Kawahara K., Lapanije S. 1967. Proteins as a random coils: Intrinsic viscosity and sedimentation coefficients in concentrated guanidine hydrochloride. J. Am. Chem. Soc. 89, 729–734.CrossRefGoogle Scholar
  24. 24.
    House-Pompeo K., Xu Y., Joh D., Speziale M. 1996. Conformational changes in the fibronectin binding MSCRAMMs are induced by ligand binding. J. Biol. Chem. 271, 1379–1384.PubMedCrossRefGoogle Scholar
  25. 25.
    Dyson H.J., Wright P.E. 2003. Intrinsically unstructured proteins and their function. Mol. Cell Biol. 6, 197–205.Google Scholar
  26. 26.
    Demarest S.J., Martinez-Yamout M., et al. 2002. Mutual synergetic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature. 415, 549–553.PubMedCrossRefGoogle Scholar
  27. 27.
    Tompa P. 2002. Intrinsically unstructed proteins. Trends Biochem. Sci. 27, 527–533.PubMedCrossRefGoogle Scholar
  28. 28.
    Vucetic S., Brown J.C., Dunker A.K., Obradovic Z. 2003. Flavors of protein disorder. Proteins. 52, 573–584.PubMedCrossRefGoogle Scholar
  29. 29.
    Oldfield C.J., Cheng Y., Cortese M.S., Brown C.J., Uverskiy V.N., Dunker A.K. 2005. Comparing and combining of mostly disordered proteins. Biochemistry. 44, 1989–2000.PubMedCrossRefGoogle Scholar
  30. 30.
    Galzitskaya O.V., Garbuzynskiy A.S., Lobanov M.Yu. 2006. Prediction of natively unfolded regions of the protein chain. Mol. Biol. 40, 341–348.Google Scholar
  31. 31.
    Frankel A.D., Kim P.S. 1991. Molecular structure of transcription factors: Implication for gene regulation. Cell. 65, 717–719.PubMedCrossRefGoogle Scholar
  32. 32.
    Negrutskii B.S., Deutsher M.P. 1991. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc. Natl. Acad. Sci. USA. 88, 4991–4995.PubMedCrossRefGoogle Scholar
  33. 33.
    Dunker A.K., Brown C.J., Lawson J.D., Lakoucheva L.M., Obradovic Z. 2002. Intrinsic disorder in cell-signalling and cancer-associated proteins. Biochemistry. 41, 6573–6582.PubMedCrossRefGoogle Scholar
  34. 34.
    Rechsteiner M., Rogers S.W. 1996. PEST sequence and regulation for proteolysis. Trends Biochem. Sci. 21, 267–271.PubMedCrossRefGoogle Scholar
  35. 35.
    Schuster S.C., Khan S., 1994. The bacterial flagellar motor. Ann. Rev. Biophys. Biomol. Struct. 23, 509–539.CrossRefGoogle Scholar
  36. 36.
    Daughdrill G.W., Chadsey M.S., Karlinsey J.E., Hughes K.T., Dahlquist F.W. 1997. The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, sigma. Nature Struct. Biol. 4, 285–291.PubMedCrossRefGoogle Scholar
  37. 37.
    Kostyukova A.S., Pyatibratov M.G., Filimonov V.V., Fedorov O.V. 1988. Flagellin parts acquiring a regular structure during polymerization are disposed on the molecule ends. FEBS Lett. 241, 141–144.PubMedCrossRefGoogle Scholar
  38. 38.
    Piaxco K.W., Gros M. 1997. The importance of being unfolded. Nature. 386, 657–658.CrossRefGoogle Scholar
  39. 39.
    Lakoucheva L.M., Brown C.J., Lawson D.J., Obradovic Z., Dunker A.K. 2002. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323, 573–584.CrossRefGoogle Scholar
  40. 40.
    Shiemaker B.A., Portman J.J., Wolynes G. 2000. Speeding molecular recognition by using the foldoing funell: The fly-casting mechanism. Proc. Natl. Acad. Sci. USA. 97, 8868–8873.CrossRefGoogle Scholar
  41. 41.
    Shulz G.E. 1979. Nucleotide binding proteins. In: Molecular Mechanism of Biological Recognition. Ed. Balaban N. N.Y.: Elsevier/North Holland Biomedical Press, 74–94.Google Scholar
  42. 42.
    Kriwacki R.W., Hengst. L., Tennant L., Reed S.I., Wright P.E. 1996. Structural studies of p21 Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: Conformatopnal disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA, 93, 11504–11509.PubMedCrossRefGoogle Scholar
  43. 43.
    Gunasekaran K., Tsai Ch.-J., Kumar S., Zanuy D., Nussinov R. 2003. Extended disordered proteins: Targeting function with less scaffold. Trends Biochem. Sci. 28, 81–85.PubMedCrossRefGoogle Scholar
  44. 44.
    Subramanian A.R. 1983. Structure and functions of ribosomal protein S1. Prog. Nucl. Acids Res. Mol. Biol. 28, 101–142.Google Scholar
  45. 45.
    Laughrea M., Moore P.B. 1977. Physical properties of ribosomal protein S1 and its interaction with the 30S ribosomal subunit of Escherichia coli. J. Mol. Biol. 112, 399–421.PubMedCrossRefGoogle Scholar
  46. 46.
    Berestovskaya N.V., Vasiliev V.D., Volkov A.A., Chetverin A.B. 1988. Electron microscopy study of Qβ replicase. FEBS Lett. 228, 263–267.CrossRefGoogle Scholar
  47. 47.
    Wower I.K., Zwieb C.W., Guven S.A., Wower J. 2000. Binding and crosslinking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome. EMBO J. 19, 6612–6621.PubMedCrossRefGoogle Scholar
  48. 48.
    Budkevich T.V., Timchenko A.A., Tiktopulo E.I., Negrutskii B.S., Shalak V.F., Petrushenko Z.M., Aksenov V.L., Willumeit R., Kohlbrecher J., Serdyuk I.N., El’skaya A.V. 2002. Extended conformation of mamalian translation elongation factor 1A in solution. Biochemistry. 41, 15342–15349.PubMedCrossRefGoogle Scholar
  49. 49.
    Kjeldgard M., Nyborg J. 1992. Refined structure of elongation factor EF-Tu from Escherichia coli. J. Mol. Biol. 223, 721–742.CrossRefGoogle Scholar
  50. 50.
    Song H., Parsons M.R., Rowsell S., Leonard G., Phillips S.E.V. 1999. Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 Å resolution. J. Mol. Biol. 285, 1245–1256.PubMedCrossRefGoogle Scholar
  51. 51.
    Reshetnikova L.S., Reiser C.O., Schrimer N.K., Bertchold H., Storm R., Heilgenfeld R., Sprinzl M. 1991. Crystal of intact elongation factor Tu from Thermus thermophilus diffracting to high resolution. J. Mol. Biol. 221, 375–377.PubMedCrossRefGoogle Scholar
  52. 52.
    Kjeldgard M., Nissen P., Thirup S., Nyborg J. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1, 35–50.CrossRefGoogle Scholar
  53. 53.
    Serdyuk I.N., Pavlov M.Yu., Rublevskaya I.N., Zaccai G., Libermann R. 1994. The triple isotopic substitution method in small angle neutron scattering: Application to the study of the ternary complex EF-Tu*GTP*aminoacyl-tRNA. Biophys. Chem. 53, 123–130.PubMedCrossRefGoogle Scholar
  54. 54.
    Vitagliano L., Masullo M., Sica F., Zagari A., Bocchini V. 2001 The crystal structure of Sulfolobus solfataricus elongation factor 1α in the complex with GDP reveals novel features in nucleotide binding and exchange. EMBO J. 20, 5305–5311.PubMedCrossRefGoogle Scholar
  55. 55.
    Bertold H., Reshetnikova L., Reiser C.O.A., Schirmer N.K., Sprinzl M., Hilgenfeld R. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 365, 126–132.CrossRefGoogle Scholar
  56. 56.
    Andersen G.R., Pedersen L., Valente L., Chatterjee I., Kinzy T.G., Kjeldgaard M., Nyborg J. 2000. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Bα. Mol. Cell. 6, 1261–1266.PubMedCrossRefGoogle Scholar
  57. 57.
    Ptitsyn O.B. 1995. Molten globule and protein folding. Adv. Prot. Chem. 47, 83–229.Google Scholar
  58. 58.
    Receveur-Brechot V., Bourhis J., Uversky V.N., Canard B., Longhi S. 2006. Assessing protein disorder and induced folding. Proteins. 62, 24–45.PubMedCrossRefGoogle Scholar
  59. 59.
    Wuttke D., Foster M.P., Case D.A., Gottesfeld J.M., Wright P. 1997. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: Determinants of affinity and sequence specificity. J. Mol. Biol. 273, 183–206.PubMedCrossRefGoogle Scholar
  60. 60.
    Bruschweiler R., Liao X., Wright P.E. 1995. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science. 268, 886–889.PubMedCrossRefGoogle Scholar
  61. 61.
    Weikl T., Abelmann K., Buchner J. 1999. An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function. J. Mol. Biol. 293, 685–691.PubMedCrossRefGoogle Scholar
  62. 62.
    Botuyan M.V., Mer G., Yi G.S., Koth C.M., Case D.A., Edwards A.M., Chazin W.J., Arrowsmith C.H. 2001. Solution structure and dynamics of yeast elongation C in complex with a von Hippel-Lindau peptide. J. Mol. Biol. 312, 177–186.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • I. N. Serdyuk
    • 1
    • 2
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow regionRussia
  2. 2.Joint Institute of Nuclear ResearchDubna, Moscow regionRussia

Personalised recommendations