Molecular Biology

, Volume 40, Issue 6, pp 867–874 | Cite as

Ribonuclease inhibitors

  • G. I. Yakovlev
  • V. A. Mitkevich
  • A. A. Makarov


RNases are important enzymes of cell metabolism, influencing gene expression, affecting cell growth and differentiation, and participating in cell defense against pathogens and induction of apoptosis. Since RNases mostly occur in complex with their inhibitors in the cell, the inhibitors also play a role in the above processes. The review considers natural protein RNase inhibitors of animals, plants, and bacteria, as well as synthetic low-molecular-weight inhibitors. Special emphasis is placed on the prospective use of RNase inhibitors in the therapy of cancer and allergy. While RNases are widespread, the number of the available natural and synthetic inhibitors is limited. A pressing problem is to design highly effective low-molecular-weight inhibitors of the RNase activity of angiogenin and eosinophil-associated RNases for anticancer and antiallergy therapy.

Key words

ribonucleases ribonuclease inhibitors angiogenin eosinophil neurotoxins tumor growth inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vallee B.L., Riordan J.F. 1997. Organogenesis and angiogenin. Cell Mol. Life Sci. 53, 803–815.CrossRefPubMedGoogle Scholar
  2. 2.
    Nacamura T., Matsumoto K. 2005. Angiogenesis inhibitors: From laboratory to clinical application. Biochem. Biophys. Res. Commun. 333, 289–291.CrossRefGoogle Scholar
  3. 3.
    Rosenberg H.F. 1998. The eosinophil ribonucleases. Cell Mol. Life Sci. 54, 795–803.CrossRefPubMedGoogle Scholar
  4. 4.
    Stepchenko O.P., Nikonov S.D., Mertvetsov N.P. 2001. Angiogenin and its role in angiogenesis. Mol. Biol. 39, 349–371.Google Scholar
  5. 5.
    Riordan J.F., Shapiro R. 2001. Isolation and enzymatic activity of angiogenin. Methods Mol. Biol. 160, 375–385.PubMedGoogle Scholar
  6. 6.
    Sorrentino S., Glitz D.G., Hamman K.J., Loegering D.A., Checkel J.A., Gleich G.J. 1992. Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity. J. Biol. Chem. 267, 14,859–14,865.Google Scholar
  7. 7.
    Domachowske J.B., Dyer K.D., Bonville C.A., Rosenberg H.F. 1998. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J. Infect Dis. 177, 1458–1464.PubMedCrossRefGoogle Scholar
  8. 8.
    Domachowske J.B., Bonville C.A., Dyer K.D., Rosenberg H.F. 1998. Evolution of antiviral activity in the ribonuclease A gene superfamily: Evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res. 26, 5327–5332.CrossRefPubMedGoogle Scholar
  9. 9.
    Dickson K.A., Haigis M.C., Raines R.T. 2005. Ribonuclease inhibitor: Structure and function. Progr. Nucleic Acid Res. Mol. Biol. 80, 349–374.Google Scholar
  10. 10.
    Hartley R.W. 2001. Barnase-barstar interaction. Methods Anzymol. 341, 599–611.Google Scholar
  11. 11.
    Krajcikova D., Hartley R.W., Sevcik J. 1988. Isolation and purification of two novel streptomycete RNase inhibitors, SaI14 and SaI20, and cloning, sequencing, and expression in Escherichia coli of the gene coding for SaI14. J. Bacteriol. 180, 1582–1585.Google Scholar
  12. 12.
    Krajcikova D., Hartley R.W. 2004. A new member of the bacterial ribonuclease inhibitor family from Saccharopolyspora erythraea. FEBS Lett. 557, 164–168.CrossRefPubMedGoogle Scholar
  13. 13.
    Shapot V.S. 1968. Nukleazy (Nucleases). Moscow: Meditsina.Google Scholar
  14. 14.
    Fominaya J.M., Hofsteenge J. 1992. Inactivation of ribonuclease inhibitor by thiol-disulfide exchange. J. Biol. Chem. 267, 24,655–24,660.Google Scholar
  15. 15.
    Abel R.L., Higis M.C., Park C., Raines R.T. 2001. Fluorescence assay for the binding of ribonuclease A to the ribonuclease inhibitor protein. Anal. Biochem. 306, 100–107.CrossRefGoogle Scholar
  16. 16.
    Antignani A., Naddeo M., Cubellis M.V., Russo A., D’Alessio G. 2001. Antitumor action of seminal ribonuclease, its dimeric structure, and its resistance to the cytosolic ribonuclease inhibitor. Biochemistry. 40, 3492–3496.CrossRefPubMedGoogle Scholar
  17. 17.
    Naddeo M., Vitagliano L., Russo A., Gotte G., D’Alessio G., Sorrentino S. 2005. Interactions of the cytotoxic RNase A dimers with the cytosolic ribonuclease inhibitor. FEBS Lett. 579, 2663–2668.CrossRefPubMedGoogle Scholar
  18. 18.
    Leich F., Koditz J., Ulbrich-Hofman R., Ulrich A. 2006. Tandemization endows bovine pancreatic ribonuclease with cytotoxic activity. J. Mol. Biol. 358, 1305–1313.CrossRefPubMedGoogle Scholar
  19. 19.
    Boix E., Wu Y., Vasandani V.M., Saxena S.K., Ardelt W., Ladner J., Youle R.J. 1996. Role of the N-terminus in RNase A homologues: Differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J. Mol. Biol. 257, 992–1007.CrossRefPubMedGoogle Scholar
  20. 20.
    Sevcik J., Urbanikova L., Leland P.A., Raines R.T. 2002. X-ray structure of two crystalline forms of a streptomycete ribonuclease with cytotoxic activity. J. Biol. Chem. 277, 47,325–47,330.CrossRefGoogle Scholar
  21. 21.
    Monti D.M., D’Alessio G. 2004. Cytosolic RNase imhibitor only affects RNases with intrinsic cytotoxicity. J. Biol. Chem. 279, 39,195–39,198.CrossRefGoogle Scholar
  22. 22.
    Makarov A.A., Ilinskaya O.N. 2003. Cytotoxic ribonucleases: Molecular weapons and their targets. FEBS Lett. 540, 15–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Ilinskaya O.N., Makarov A.A. 2005. Why ribonucleases induce tumor cell death. Mol. Biol. 39, 3–13.CrossRefGoogle Scholar
  24. 24.
    Kobe B., Deisenhofer J. 1993. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature. 366, 751–756.CrossRefPubMedGoogle Scholar
  25. 25.
    Kobe B., Deisenhofer J. 1995. A structural basis of the interaction between leucine-rich repeats and protein ligands. Nature. 374, 183–186.CrossRefPubMedGoogle Scholar
  26. 26.
    Kobe B., Deisenhofer J. 1996. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with RNase A. J. Mol. Biol. 264, 1028–1043.CrossRefPubMedGoogle Scholar
  27. 27.
    Papageorgiou A.C., Shapiro R., Acharya K.R. 1997. Molecular recognition of human angiogenin by placental ribonuclease inhibitor: An X-ray crystallographic study at 20 Å resolution. EMBO J. 16, 5162–5177.CrossRefPubMedGoogle Scholar
  28. 28.
    Iyer S., Holloway D.E., Kumar K., Shapiro R., Acharya K.R. 2005. Molecular recognition of human eosinophil-derived neurotoxin (RNase 2) by placental ribonuclease inhibitor. J. Mol. Biol. 347, 637–655.CrossRefPubMedGoogle Scholar
  29. 29.
    Kosuge T., Isemura M., Takahashi Y., Odani S., Odani Sh. 2003. Ribonuclease inhibitor in Malux domestica (common apple): Isolation and partial characterization. Biosci. Biotechnol. Biochem. 67, 698–703.CrossRefPubMedGoogle Scholar
  30. 30.
    Shapiro R., Vallee B.L. 1987. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. USA. 84, 2238–2241.CrossRefPubMedGoogle Scholar
  31. 31.
    Olson K.A., French T.C., Vallee B.L., Fett J.W. 1994. A monoclonal antibody to human angiogenin suppresses tumor jn athymic mice. Cancer Res. 54, 4576–4579.PubMedGoogle Scholar
  32. 32.
    Olson K.A., Fett J.W., French T.C., Key M.E., Vallee B.L. 1995. Angiogenin antagonists prevent tumor growth in vivo. Proc. Natl. Acad. Sci. USA. 92, 442–446.CrossRefPubMedGoogle Scholar
  33. 33.
    Botella-Estrada R., Malet G., Revert F., Dasi F., Crespo A., Sanmartin O., Guillen C., Alino S.F. 2001. Antitumor effect of B16 melanoma cells genetically modified with the angiogenesis inhibitor masin. Cancer Gene Therapy. 8, 278–284.CrossRefPubMedGoogle Scholar
  34. 34.
    Hen J.X., Gao Y., Liu J.W., Tian Y.X., Zhao J., Cui X.Y. 2005. Antitumor effects of human ribonuclease inhibitor gene transfected on B16 melanoma cells. Int. J. Biochem. Cell Biol. 37, 1219–1231.CrossRefGoogle Scholar
  35. 35.
    Wang T, Yang M., Watkins T., Xiuyun C. 2005. Inhibition of B16 melanoma growth in vivo by retroviral vector-mediated human ribonuclease inhibitor. Angiogenesis. 8, 73–81.CrossRefPubMedGoogle Scholar
  36. 36.
    Hartley R.W. 1993. Directed mutagenesis and barnase-barstar recognition. Biochemistry. 32, 5978–5984.CrossRefPubMedGoogle Scholar
  37. 37.
    Yakovlev G.I., Moiseyev G.P., Protasevich I.I., Ranjbar B., Bocharov A.L., Kirpichnikov M.P., Gilli R.M., Briand C.M., Hartley R.W., Makarov A.A. 1995. Dissociation constants and thermal stability of complexes of Bacillus intermedius RNase and the protein inhibitor of Bacillus amyloliquefaciens RNase. FEBS Lett. 366, 156–158.CrossRefPubMedGoogle Scholar
  38. 38.
    Sevcik J., Urbanikova L., Dauter Z., Wilson K.S. 1998. Recognition of RNase Sa by the inhibitor barstar: Structure of the complex at 1.7 Å resolution. Acta Crystallogr. 54, 954–963.Google Scholar
  39. 39.
    Guillet V., Lapthorn A., Hartley R.W., Mauguen Y. 1993. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure. 1, 165–176.CrossRefPubMedGoogle Scholar
  40. 40.
    Buckle A.M., Schreiber G., Fersht A.R. 1994. Protein-protein recognition: Crystal structural analysis of a barnase-barstar complex at 2.0 Å resolution. Biochemistry. 33, 8878–8889.CrossRefPubMedGoogle Scholar
  41. 41.
    Schreiber G., Buckle A., Fersht A.R. 1994. Stability versus function: Two competing forces in the evolution of barstar. Structure. 2, 945–951.CrossRefPubMedGoogle Scholar
  42. 42.
    Mitkevich V.A., Schulga A.A., Ermolyuk Y.S., Lobachov V.A., Chekhov V.O., Yakovlev G.I., Hartley R.W., Pace C.N., Kirpichnikov M.P., Makarov A.A. 2003. Thermodynamics of denaturation of complexes of barnase and binase with barstar. Biophys. Chem. 105, 383–390.CrossRefPubMedGoogle Scholar
  43. 43.
    Russo N., Acharya K.R., Shapiro R. 2001. Small molecule inhibitors of RNase A and related enzyme. Methods Enzymol. 341, 629–648.PubMedCrossRefGoogle Scholar
  44. 44.
    Yakovlev G.I., Karpeisky M.Ya., Bezborodova S.I., Beletskaja O.P., Sakharovsky V.G. 1980. Guanil-specific ribonuclease from the fungus Penicillium chrysogenum strain 152 and its complex with guanosine 3′-phosphate studied by nuclear magnetic resonance. Eur. J. Biochem. 109, 75–85.CrossRefPubMedGoogle Scholar
  45. 45.
    Yakovlev G.I., Moiseyev G.P. 1993. NMR studies of a complex of RNAse from Penicillium brevicompactum with dinucleotide phosphonate and the implications for the mechanism of enzyme action. Biochim. Biophys. Acta. 1202, 143–148.PubMedGoogle Scholar
  46. 46.
    Lindquist R.N., Lynn J.L., Lienhard G.E. 1973. Possible transition-state analogs for ribonuclease. The complexes of uridine with oxovanadium (IV) ion and vanadium (V) ion. J. Am. Chem. Soc. 95, 8762–8768.CrossRefPubMedGoogle Scholar
  47. 47.
    Russo N., Shapiro R. 1999. Potent inhibition of mammalian ribonucleases by 3′, 5′-pyrophosphate-linked nucleotides. J. Biol. Chem. 274, 14,902–14,908.CrossRefGoogle Scholar
  48. 48.
    Russo N., Shapiro R., Vallee B.L. 1997. 5′-Diphosphoadenosine 3′-phosphate is a potent inhibitor of bovine pancreatic ribonuclease A. Biochem. Biophys. Res. Commun. 231, 671–674.CrossRefPubMedGoogle Scholar
  49. 49.
    Leonidas D.D., Shapiro R., Irons L.I., Russo N., Acharya K.R. 1997. Crystal structures of ribonuclease A complexes with 5′-diphosphoadenosine 3′-phosphate and 5′-diphosphoadenosine 2′-phosphate at 1.7 Å resolution. Biochemistry. 36, 5578–5588.CrossRefPubMedGoogle Scholar
  50. 50.
    Kumar K., Jenkins J.L., Jardine A.M., Shapiro R. 2003. Inhibition of mammalian ribonuclease by endogenous adenosine dinucleotides. Biochem. Biophys. Res. Commun. 300, 81–86.CrossRefPubMedGoogle Scholar
  51. 51.
    Baker M.D., Holloway D.E., Swaminathan G.I., Acharya K.R. 2006. Crystal structure of eosinophil-derived neurotoxin (EDN) in complex with the inhibitor 5′-ATP, Ap3A, Ap4A, and Ap5A. Biochemistry. 45, 416–426.CrossRefPubMedGoogle Scholar
  52. 52.
    Jenkins C.L., Thiyagajan N., Sweeney R.Y., Guy M.P., Kelemen B.R., Acharia K.R., Raines R.T. 2005. Binding of non-natural 3′-nucleotides to ribonuclease A. FEBS J. 272, 744–755.CrossRefPubMedGoogle Scholar
  53. 53.
    Hatzopoulos G.N., Leonidas D.D., Kardakaris R., Kobe J., Oikonomakos N.G. 2005. The binding of IMP to ribonuclease A. FEBS J. 272, 3988–4001.CrossRefPubMedGoogle Scholar
  54. 54.
    Maiti T.K., De S., Dasgupta S., Pathak T. 2006. 3′-N-Alkylamino-3′-deoxy-ara-uridines: A new class of potential inhibitors of ribonuclease A and angiogenin. Bioorg. Med. Chem. 14, 1221–1228.CrossRefPubMedGoogle Scholar
  55. 55.
    Higgin J.J., Yakovlev G.I., Mitkevich V.A., Makarov A.A., Raines R.T. 2003. Zinc (II)-mediated inhibition of a ribonuclease by an N-hydroxyurea nucleotide. Bioorg. Med. Chem. Lett. 13, 409–412.CrossRefPubMedGoogle Scholar
  56. 56.
    Makarov A.A., Yakovlev G.I., Mitkevich V.A., Higgin J.J., Raines R.T. 2004. Zinc (II)-mediated inhibition of ribonuclease Sa by an N-hydroxyurea nucleotide and its basis. Biochem. Biophys. Res. Commun. 319, 152–156.CrossRefPubMedGoogle Scholar
  57. 57.
    Kao R.Y., Jenkins J.L., Olson K.A., Key M.E., Fett J.W., Shapiro R. 2002. A small-molecule inhibitor of the ribonucleolytic activity of human angiogenin that possesses antitumor activity. Proc. Natl. Acad. Sci. USA. 99, 10,066–10,071.CrossRefGoogle Scholar
  58. 58.
    Maiti T.K., Chatterjee J., Dasgupta S. 2003. Effect of green tea polyphenols on angiogenesis induced by an angiogenin-like protein. Biochem. Biophys. Res. Commun. 308, 64–67.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • G. I. Yakovlev
    • 1
  • V. A. Mitkevich
    • 1
    • 2
  • A. A. Makarov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Center of Medical ResearchUniversity of OsloMoscowRussia

Personalised recommendations