Molecular Biology

, Volume 40, Issue 2, pp 235–239

Small heat shock proteins and adaptation of various Drosophila species to hyperthermia

  • V. Yu. Shilova
  • D. G. Garbuz
  • M. B. Evgen’ev
  • O. G. Zatsepina
Molecular Mechanisms of Biological Processes

Abstract

The dynamics and the level of accumulation of small heat shock proteins (sHSP group 21–27) after a heat exposure were studied in three Drosophila species differing in thermotolerance. The southern species Drosophila virilis, having the highest thermotolerance, surpassed thermosensitive D. lummei and D. melanogaster in the level of sHSPs throughout the temperature range tested. The results suggest an important role of sHSPs in the molecular mechanisms of adaptation to adverse environmental conditions, particularly to hyperthermia.

Key words

Drosophila heat shock heat shock proteins heat shock genes thermotolerance adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hunt C., Morimoto R.I. 1985. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc. Natl. Acad. Sci. USA. 82, 6455–6459.PubMedGoogle Scholar
  2. 2.
    Margulis B.A., Guzhova I.V. 2000. Stress proteins in eukaryotic cells. Tsitologiya. 42, 323–342.Google Scholar
  3. 3.
    Ul’masov Kh.A., Karryeva B.Ch., Karaev K. 1993. Stressovye belki i adaptatsiya (Stress Proteins and Adaptation). Ashkhabad: Ylym.Google Scholar
  4. 4.
    Haslbeck M., Walke S., Stormer T., Ernsperger M., White H.E., Chen S., Saibil H.R., Buchner J. 1999. HSP27: A temperature-regulated chaperone. EMBO J. 18, 6744–6751.CrossRefPubMedGoogle Scholar
  5. 5.
    Kelley W.L. 1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23, 222–227.CrossRefPubMedGoogle Scholar
  6. 6.
    Krebs R.A. 1999. A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species. Cell Stress Chaperones. 4, 243–249.CrossRefPubMedGoogle Scholar
  7. 7.
    Zatsepina O.G., Velikodvorskaia V.V., Molodtsov V.B., Garbuz D.G., Lerman D.N., Bettencourt B.R., Feder M.E., Evgenev M.B. 2001. A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70 expression. J. Exp. Biol. 204, 1869–1881.PubMedGoogle Scholar
  8. 8.
    Garbuz D.G., Moloftsov V.B., Velikodvorskaia V.V., Zatsepina O.G., Evgenev M.B. 2002. Evolution of response to heat shock within the genus Drosophila. Genetika. 38, 1097–1109.PubMedGoogle Scholar
  9. 9.
    Garbuz D.G., Zatsepina O.G., Feder M.E., Evgen’ev M.B. 2003. Evolution of termotolerance and the heat-shock response: evidence from inter/intraspecific comparison and interspecific hybridization in the Drosophila virilis species group: 1. Thermal phenotype. J. Exp. Biol. 206, 2399–2408.CrossRefPubMedGoogle Scholar
  10. 10.
    Mosser D.D., Caron A.W., Bourged L., Denis-Larose C., Massie B. 1997. Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis. Mol. Cell Biol. 17, 5317–5327.PubMedGoogle Scholar
  11. 11.
    Evgenev M.B., Zatsepina O.G., Garbuz D.G., Lerman D.N., Velikodvorskaia V.V., Zelentsova E.S., Feder M.E. 2004. Evolution and arrangement of the hsp70 gene cluster in two closely related species of the virilis group of Drosophila. Chromosoma. 113, 223–232.Google Scholar
  12. 12.
    Chen Q., Ma E., Behar K.L., Xu T., Haddad G.G. 2002. Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. J. Biol. Chem. 277, 3274–3279.PubMedGoogle Scholar
  13. 13.
    Ayme A., Tissieres A. 1985. Locus 67B of Drosophila melanogaster contains seven, not four, closely related heat shock genes. EMBO J. 4, 2949–2954.PubMedGoogle Scholar
  14. 14.
    Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.CrossRefPubMedGoogle Scholar
  15. 15.
    O’Farrell P.H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.PubMedGoogle Scholar
  16. 16.
    Krebs R.A., Feder M.E. 1997. Deleterious consequences of HSP70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones. 2, 60–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Feder M.E., Hofmann G.E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282.CrossRefPubMedGoogle Scholar
  18. 18.
    Evgenev M.B., Sheinker V.Sh., Levin A.V. 1987. Molecular mechanisms of adaptation to hyperthermia in higher organisms: 1. Heat shock protein synthesis in cultured cells and larvae of different silkworm species. Mol. Biol. 21, 484–494.Google Scholar
  19. 19.
    Mehlen P., Schulze-Osthoff K., Arrigo A.P. 1996. Small stress proteins as novel regulators of apoptosis. J. Biol. Chem. 271, 16510–16514.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. Yu. Shilova
    • 1
  • D. G. Garbuz
    • 1
  • M. B. Evgen’ev
    • 1
    • 2
  • O. G. Zatsepina
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Cell BiophysicsRussian Academy of Sciences, PushchinoMoscow RegionRussia

Personalised recommendations