Molecular Biology

, Volume 40, Issue 2, pp 169–182 | Cite as

Quorum sensing regulation of gene expression: A promising target for drugs against bacterial pathogenicity

  • I. A. Khmel
  • A. Z. Metlitskaya
Reviews

Abstract

Bacteria are sensitive to an increase in population density and respond quickly and coordinately by induction of certain sets of genes. This mode of regulation, known as quorum sensing (QS), is based on the effect of low-molecular-weight signal molecules, autoinducers (AIs). When the population density is high, AIs accumulate in the medium and interact with regulatory receptor proteins. QS systems are global regulators of bacterial gene expression and play a key role in controlling many metabolic processes in the cell, including bacterial virulence. The review considers the molecular mechanisms of QS in different taxonomic groups of bacteria and discusses QS regulation as a possible target in treating bacterial infections. This is a new, alternative strategy of antibacterial therapy, which includes the construction of drugs acting directly against bacterial pathogenicity by suppressing QS (antipathogenicity drugs). This strategy makes it possible to avoid a wide distribution of antibiotic-resistant pathogenic bacteria and the formation of biofilms, which dramatically increase drug resistance.

Key words

quorum sensing regulation bacteria autoinducers N-acyl homoserine lactones biofilms peptides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuqua W.C., Winans S.C., Greenberg E.P. 1996. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50, 727–751.CrossRefPubMedGoogle Scholar
  2. 2.
    De Kievit T.R., Iglewski B.H. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68, 4839–4849.PubMedGoogle Scholar
  3. 3.
    Miller M.B., Bassler B.L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199.CrossRefPubMedGoogle Scholar
  4. 4.
    Zavilgelsky G.B., Manukhov I.V. “Quorum sansing,” or how bacteria “talk” to each other. Mol. Biol. 35, 268–277.Google Scholar
  5. 5.
    Schauder S., Bassler B.L. 2001. The languages of bacteria. Genes Dev. 15, 1468–1480.CrossRefPubMedGoogle Scholar
  6. 6.
    Taga M.E., Bassler B.L. 2003. Chemical communication among bacteria. Proc. Natl. Acad. Sci. USA. 100,suppl. 2, 14 549–14 554.Google Scholar
  7. 7.
    Gintsburg A.L., Il’ina T.S., Romanova Yu.M. 2003. “Quorum sansing,” or the social behavior of bacteria. Zh. Mikrobiol. Epidemiol. Immunobiol. 5, 86–93.PubMedGoogle Scholar
  8. 8.
    Ahmer B.M.M. 2004. Cell-to-cell signaling in Escherichia coli and Salmonella enterica. Mol. Microbiol. 52, 933–945.CrossRefPubMedGoogle Scholar
  9. 9.
    Henke J.M., Bassler B.L. 2004. Bacterial social engagements. Trends Cell Biol. 14, 648–656.CrossRefPubMedGoogle Scholar
  10. 10.
    March J.C., Bentley W.E. 2004. Quorum sensing and bacterial cross-talk in biotechnology. Curr. Opin. Biotechnol. 15, 495–502.CrossRefPubMedGoogle Scholar
  11. 11.
    Waters C., Bassler B. 2005. Quorum Sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346.CrossRefPubMedGoogle Scholar
  12. 12.
    Veselova M., Kholmeckaya M., Klein S., Voronina E., Lipasova V., Metlitskaya A., Mayatskaya A., Lobanok E., Khmel I., Chernin L. 2003. Production of N-acylhomoserine lactone signal molecules by Gram-negative soil-borne and plant-associated bacteria. Folia Microbiol. 48, 794–798.Google Scholar
  13. 13.
    Costerton J.W., Stewart P.S., Greenberg E.P. 1999. Bacterial biofilms: A common cause of persistent infections. Science. 284, 1318–1322.CrossRefPubMedGoogle Scholar
  14. 14.
    Watnick P., Kolter R. 2000. Biofilms, city of microbes. J. Bacteriol. 182, 2675–2679.CrossRefPubMedGoogle Scholar
  15. 15.
    Singh P.K., Schaefer A.L., Parsek M.R., Moninger T.O., Welsh M.J., Greenberg E.P. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 407, 762–764.CrossRefPubMedGoogle Scholar
  16. 16.
    Carter G., Drummond D., Bermudez L.E. 2003. Characterization of biofilm formation by Mycobacterium avium strains. J. Med. Microbiol. 52, 1–6.Google Scholar
  17. 17.
    Zhu J., Makalanos J.J. 2003. QS-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell. 5, 647–656.CrossRefPubMedGoogle Scholar
  18. 18.
    Il’ina T.S., Romanova Yu.M., Gintsburg A.L. 2004. Biofilms as a mode of existence of bacteria in the environment and in the host organism: Phenomenon, genetic control, and systems regulating their development. Genetika. 40, 1445–1456.PubMedGoogle Scholar
  19. 19.
    Pearson J.P., van Delden C., Iglewski B.H. 1999. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181, 1203–1210.PubMedGoogle Scholar
  20. 20.
    Fuqua W.C., Winans S.C., Greenberg E.P. 1994. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275.PubMedGoogle Scholar
  21. 21.
    Hanzelka B.L., Greenberg E.P. 1996. Quorum sensing in Vibrio fischeri: Evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J. Bacteriol. 178, 5291–5294.PubMedGoogle Scholar
  22. 22.
    Schaefer A.L., Val D.L., Hanzelka B.L., Cronan J.E. Jr., Greenberg E.P. 1996. Generation of cell-to-cell signals in quorum sensing: Acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA. 93, 9505–9509.CrossRefPubMedGoogle Scholar
  23. 23.
    Val D.L., Cronan J.E. Jr. 1998. In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J. Bacteriol. 180, 2644–2651.PubMedGoogle Scholar
  24. 24.
    Parsek M.R., Val D.L., Hanzelka B.L., Cronan J.E. Jr., Greenberg E.P. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA. 96, 4360–4365.CrossRefPubMedGoogle Scholar
  25. 25.
    Pearson J.P., Pesci E.C., Iglewski B.H. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179, 5756–5767.PubMedGoogle Scholar
  26. 26.
    Suga H., Smith K. 2003. Molecular mechanisms of bacterial quorum sensing as a new drug target. Curr. Opin. Chem. Biol. 7, 586–591.CrossRefPubMedGoogle Scholar
  27. 27.
    Schuster M., Lostroh C.P., Ogi T., Greenberg E.P. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. J. Bacteriol. 185, 2066–2079.CrossRefPubMedGoogle Scholar
  28. 28.
    Wagner V.E., Bushnell D., Passador L., Brooks A.I., Iglewski B.H. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: Effects of growth phase and environment. J. Bacteriol. 185, 2080–2095.CrossRefPubMedGoogle Scholar
  29. 29.
    Telford G., Wheeler D., Williams P., Tomkins P.T., Appleby P., Sewell H., Stewart G.S., Bycroft B.W., Pritchard D.I. 1998. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect. Immun. 66, 36–42.PubMedGoogle Scholar
  30. 30.
    Smith R.S., Harris S.G., Phipps R., Iglewski B. 2002. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J. Bacteriol. 184, 1132–1139.PubMedGoogle Scholar
  31. 31.
    Ritchie A.J., Jansson A., Stallberg J., Nilsson P., Lysaght P., Cooley M.A. 2005. The Pseudomonas aeruginosa quorum-sensing molecule N-3-(oxododecanoyl)-L-homoserine lactone inhibits T-cell differentiation and cytokine production by a mechanism involving an early step in T-cell activation. Infect. Immun. 73, 1648–1655.PubMedGoogle Scholar
  32. 32.
    Pesci E.C., Milbank J.B., Pearson J.P., Mc Knight S., Kende A.S. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 96, 11229–11234.CrossRefPubMedGoogle Scholar
  33. 33.
    Deziel E., Lepine F., Milot S., He J., Mindrinos M.N., Tompkins R.G., Rahme L.G. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA. 101, 1339–1344.CrossRefPubMedGoogle Scholar
  34. 34.
    Wade D.S., Calfee M.W., Rocha E.R., Ling E.A., Engstrom E., Coleman J.P., Pesci E.C. 2005. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J. Bacteriol. 187, 4372–4380.CrossRefPubMedGoogle Scholar
  35. 35.
    Holden M.T.G., Chhabra S.R., de Nys R., Stead P., Bainton N.J., Hill P.J., Manefield M., Kumar N., Labatte M., England D., Rice S., Givskov M., Salmond G.P.C., Stewart G.S.A.B., Bycroft B.W., Kjelleberg S., Williams P. 1999. Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol. Microbiol. 33, 1254–1266.CrossRefPubMedGoogle Scholar
  36. 36.
    Degrassi G., Aguilar C., Bosco M., Zahariev S., Pongor S., Venturi V. 2002. Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: Cross-talk with quorum sensing bacterial sensors. Curr. Microbiol. 45, 250–254.CrossRefPubMedGoogle Scholar
  37. 37.
    Davies D.G., Parsek M.R., Pearson J.P., Iglewski B.H., Costerton J.W., Greenberg E.P. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 280, 295–298.CrossRefPubMedGoogle Scholar
  38. 38.
    McKenney D., Brown K.E., Allison D.G. 1995. Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: Evidence of interspecies communication. J. Bacteriol. 177, 6989–6992.PubMedGoogle Scholar
  39. 39.
    Riedel K., Hentzer M., Geisenberger O., Huber B., Steidle A., Wu H., Hoiby N., Givskov M., Molin S., Eberl L. 2001. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology. 147, 3249–3262.PubMedGoogle Scholar
  40. 40.
    Lewenza S., Visser M.B., Sokol P.A. 2002. Interspecies communication between Burkholderia capacia and Pseudomonas aeruginosa. Can. J. Microbiol. 48, 707–716.PubMedGoogle Scholar
  41. 41.
    Novick R.P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48, 1429–1449.CrossRefPubMedGoogle Scholar
  42. 42.
    Lyon G.J., Novick R.P. 2004. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides. 25, 1389–1403.CrossRefPubMedGoogle Scholar
  43. 43.
    Mayville P., Ji G., Beavis R., Yang H., Goger M., Novick R.P., Muir T.W. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptide from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA. 96, 1218–1223.CrossRefPubMedGoogle Scholar
  44. 44.
    Gov Y., Bitler A., Dell’Acqua G., Torres J.V., Balaban N. 2001. RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: Structure and function analysis. Peptides. 22, 1609–1620.CrossRefPubMedGoogle Scholar
  45. 45.
    Balaban N., Goldkorn T., Gov Y., Hirshberg M., Koyfman N., Matthews H.R., Nhan R.T., Singh B., Uziel O. 2001. Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating protein (TRAP). J. Biol. Chem. 276, 2658–2667.PubMedGoogle Scholar
  46. 46.
    Chen X., Schauder S., Potler N., Van Dorsselaer A., Pelczer I., Bassler B.L., Hughson F.M. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature. 415, 545–549.PubMedGoogle Scholar
  47. 47.
    Surette M.G., Miller M., Bassler B. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA. 96, 1639–1644.CrossRefPubMedGoogle Scholar
  48. 48.
    Miller S.T., Xavier K.B., Campagna S.R., Taga M.E., Semmelhack M.F., Bassler B.L., Hughson F.M. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell. 15, 677–687.PubMedGoogle Scholar
  49. 49.
    Sperandio V., Mellies J.L., Nguen W., Shin S., Kaper J.B. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorragic and enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA. 96, 15196–15201.CrossRefPubMedGoogle Scholar
  50. 50.
    Sircili M.P., Walters M., Trabulsi L.R., Sperandio V. 2004. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infect Immun. 72, 2329–2337.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhu J., Miller M.B., Vance R.E., Dziejman M., Bassler B.L., Mekalanos J.J. 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA. 99, 3129–3134.PubMedGoogle Scholar
  52. 52.
    Miller M.B., Skorupski K., Lenz D.H., Taylor R.K., Bassler B.L. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell. 110, 303–314.PubMedGoogle Scholar
  53. 53.
    Lyon W.R., Madden J.C., Stein J., Caparon M.G. 2001. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol. Microbiol. 42, 145–157.CrossRefPubMedGoogle Scholar
  54. 54.
    DeLisa M.P., Wu C.F., Wang L., Valdes J.J., Bentley W.E. 2001. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J. Bacteriol. 183, 5239–5247.PubMedGoogle Scholar
  55. 55.
    Hentzer M., Givskov M. 2003. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Invest. 112, 1300–1307.CrossRefPubMedGoogle Scholar
  56. 56.
    Parsek M.R., Val D.L., Hanzelka B.L., Cronan J.E., Jr., Greenberg E.P. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA. 96, 4360–4365.CrossRefPubMedGoogle Scholar
  57. 57.
    Sofer D., Gilboa-Garber N., Belz A., Garber N.C. 1999. ’subinhibitory’ erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemotherapy. 45, 335–341.CrossRefPubMedGoogle Scholar
  58. 58.
    Tateda K., Standiford T.J., Pechere J.C., Yamaguchi K. 2004. Regulatory effects of macrolides on bacterial virulence: Potential role as quorum-sensing inhibitors. Curr. Pharm. Design. 10, 3055–3065.CrossRefGoogle Scholar
  59. 59.
    Tateda K., Comte R., Pechere J.-C., Kohler T., Yamaguchi K., Van Delden C. 2001. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 45, 1930–1933.CrossRefPubMedGoogle Scholar
  60. 60.
    Imamura Y., Yanagihara K., Mizuta Y., Seki M., Ohno H., Higashiyama Y., Miyazaki Y., Tsukamoto K., Hirakata Y., Tomono K., Kadota J., Kohno S. 2004. Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-oxododecanoyl) homoserine lactone in NCI-H292 cells. Antimicrob. Agents Chemother. 48, 3457–3461.CrossRefPubMedGoogle Scholar
  61. 61.
    McClean K.H., Winson M.K., Fish L., Taylor A., Chhabra S.R., Camara M., Daykin M., Lamb J.H., Swift S., Bycroft B. W., Stewart G.S.A.B., Williams P. 1997. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology. 143, 3703–3711.PubMedGoogle Scholar
  62. 62.
    Passador L. 1996. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J. Bacteriol. 178, 5995–6000.PubMedGoogle Scholar
  63. 63.
    Schaefer A.L., Hanzelka B.L., Eberhard A., Greenberg E.P. 1996. Quorum sensing in Vibrio fischeri: Probing auto-inducer-LuxR interactions with autoinducer analogs. J. Bacteriol. 178, 2897–2901.PubMedGoogle Scholar
  64. 64.
    Smith K.M., Bu Y., Suga H. 2003. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol. 10, 81–89.PubMedGoogle Scholar
  65. 65.
    Givskov M., de Nys R., Manefield M., Gram L., Maximilien R., Eberl L., Molin S., Steinberg P.D., Kjelleberg S. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J. Bacteriol. 178, 6618–6622.PubMedGoogle Scholar
  66. 66.
    Manefield M., de Nys R., Kumar N., Read R., Givskov M., Steinberg P., Kjelleberg S. 1999. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology. 145, 283–291.PubMedGoogle Scholar
  67. 67.
    Hentzer M., Riedel K., Rasmussen T.B., Heydorn A., Andersen J.B., Parsek M.R., Rice S.A., Eberl L., Molin S., Hoiby N., Kjelleberg S., Givskov M. 2002. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 148, 87–102.PubMedGoogle Scholar
  68. 68.
    Martinelli D., Grossmann G., Sequin U., Brandl H., Bachofen R. 2004. Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiol. 4, 25.CrossRefPubMedGoogle Scholar
  69. 69.
    Manefield M., Rasmussen T.B., Hentzer M., Anderson J.B., Steinberg P., Kjelleberg S., Givskov M. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 148, 1119–1127.PubMedGoogle Scholar
  70. 70.
    Manefield M., Welch M., Givskov M., Salmond G.P.C., Kelleberg S. 2001. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett. 205, 131–138.PubMedGoogle Scholar
  71. 71.
    Hentzer M., Wu H., Andersen J.B., Riedel K., Rasmussen T.B., Bagge N., Kumar N., Schembri M.A., Song Z., Kristoffersen P., Manefield M., Costerton J.W., Molin S., Eberl L., Steinberg P., Kjelleberg S., Hoiby N., Givskov M. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803–3815.CrossRefPubMedGoogle Scholar
  72. 72.
    Ren D., Bedzyk L.A., Ye R.W., Thomas S.M., Wood T.K. 2004. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol. Bioeng. 88, 630–642.CrossRefPubMedGoogle Scholar
  73. 73.
    Yates E.A., Philipp B., Buckley C., Atkinson S., Chhabra S.R., Sockett R.E., Goldner M., Dessaux Y., Camara M., Smith H., Williams P. 2002. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70, 5635–5646.CrossRefPubMedGoogle Scholar
  74. 74.
    Dong Y.H., Xu J.L., Li X.Z., Zhang L.H. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA. 97, 3526–3531.PubMedGoogle Scholar
  75. 75.
    Dong Y.H., Wang L.H., Xu J.L., Zhang H.B., Zhang X.F., Zhang L.H. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 411, 813–817.CrossRefPubMedGoogle Scholar
  76. 76.
    Dong Y.H., Zhang X.F., Xu J.L., Zhang L.H. 2004. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl. Environ. Microbiol. 70, 954–960.CrossRefPubMedGoogle Scholar
  77. 77.
    Leadbetter J.R., Greenberg E.P. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921–6926.CrossRefPubMedGoogle Scholar
  78. 78.
    Lin Y.N., Xu J.L., Hu J., Wang L.H., Ong S.L., Leadbetter J.R., Zhang L.H. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47, 849–860.CrossRefPubMedGoogle Scholar
  79. 79.
    Chun C.K., Ozer E.A., Welsh M.J., Zabner J., Greenberg E.P. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl. Acad. Sci. USA. 101, 3587–3590.PubMedGoogle Scholar
  80. 80.
    Balaban N., Collins L.V., Cullor J.S., Hume E.B., Medina-Acosta E., Vieira da Motta O., O’Callaghan R., Rossitto P.V., Shirtliff M.E., Serafim da Silveira L., Tarkowski A., Torres J.V. 2000. Prevention of diseases caused by Staphylococcus aureus using the peptide RIP. Peptides. 21, 1301–1311.CrossRefPubMedGoogle Scholar
  81. 81.
    Vieira-da-Motta O., Ribeiro P.D., Dias da Silva W., Medina-Acosta E. 2001. RNAIII-inhibiting peptide (RIP) inhibits agr-regulated toxin production. Peptides. 22, 1621–1627.CrossRefPubMedGoogle Scholar
  82. 82.
    Gov Y., Bitler A., Dell’Acqua G., Torres J.V., Balaban N. 2001. RNAIII-inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: Structure and function analysis. Peptides. 22, 1609–1620.CrossRefPubMedGoogle Scholar
  83. 83.
    Ribeiro P.D., Ribeiro O.D., Marcolan A.M., Medina-Acosta E. 2003. Treatment efficacy of the lead RNAIII-inhibiting peptide YSPWTNF-NH2 in acquired Staphylococcus aureus sepsis: A histopathological assessment. Peptides. 24, 1829–1836.PubMedGoogle Scholar
  84. 84.
    Yang G., Cheng H., Liu C., Xue Y., Gao Y., Liu N., Gao B., Wang D., Li S., Shen B., Shao N. 2003. Inhibition of Staphylococcus aureus pathogenesis in vitro and in vivo by RAP-binding peptides. Peptides. 24, 1823–1828.PubMedGoogle Scholar
  85. 85.
    Giacometti A., Cirioni O., Gov Y., Ghiselli R., Del Prete M.S., Mocchegiani F., Saba V., Orlando F., Scalise G., Balaban N., Dell’Acqua G. 2003. RNAIII-inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 1979–1983.CrossRefPubMedGoogle Scholar
  86. 86.
    Balaban N., Giacometti A., Cirioni O., Gov Y., Ghiselli R., Mocchegiani F., Viticchi C., Del Prete M.S., Saba V., Scalise G., Dell’Acqua G. 2003. Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J. Infect. Dis. 187, 625–630.CrossRefPubMedGoogle Scholar
  87. 87.
    Mathesius U., Mulders S., Gao M., Teplitski M., Caetano-Anolles G., Rolfe B.G., Bauer W.D. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA. 100, 1444–1449.CrossRefPubMedGoogle Scholar
  88. 88.
    Bauer W.D., Mathesius U. 2004. Plant responses to bacterial quorum sensing signals. Curr. Opin. Plant Biol. 7, 429–433.CrossRefPubMedGoogle Scholar
  89. 89.
    Huber B., Eberl L., Feucht W., Polster J. 2003. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z. Naturforsch. 58, 879–884.Google Scholar
  90. 90.
    Teplitski M., Robinson J.B., Bauer W.D. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact. 13, 637–648.PubMedGoogle Scholar
  91. 91.
    Gao M., Teplitski M., Robinson J.B., Bauer W.D. 2003. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant Microbe Interact. 16, 827–834.PubMedGoogle Scholar
  92. 92.
    Teplitski M., Chen H., Rajamani S., Gao M., Merighi M., Sayre R.T., Robinson J.B., Rolfe B.G. Bauer W.D. 2004. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol. 134, 137–146.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • I. A. Khmel
    • 1
  • A. Z. Metlitskaya
    • 1
  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations