Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Cell Ultrastructure in Azospirillum brasilense Biofilms

  • 18 Accesses


Due to the primary localization of both epiphytic and endophytic plant growth-promoting rhizobacteria on the surface of the plant root system, biofilm formation is an adaptive trait for these microorganisms. Under conditions of nitrogen limitation in liquid media, nitrogen-fixing Azospirillum brasilense strains switch mainly to the biofilm mode of growth. Overall ultrastructural similarities of the cells within A. brasilense biofilms were revealed, and their resistance to desiccation and oxidative stress was characterized. In strains Sp7, Cd, and Sp245, several types of single and undivided cells were revealed, as well as cystlike cells with pronounced morphological diversity. Resistance to desiccation and to oxidative stress was higher in the biofilm populations of these strains than in planktonic cultures. Dormant forms remained viable in dry biofilms of strains Sp245, Sp7, and Cd formed in a nitrogen-free medium after storage for 120 days. Viability of the biofilms of the same strains formed in the presence of nitrogen was retained for 120, 90, and 60 days, respectively. The minimal inhibitory concentration of H2O2 for biofilms was 1.0% for strains Sp7 and Cd and 0.1% for strain Sp245. Both the dormant forms and biofilms of strain Sp245 were more sensitive to H2O2 than those of strains Sp7 and Cd. Peroxidase activity was not previously reported in Azospirillum biofilms.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Assmus, B., Hutzler, P., Kirchhof, G., Amann, R., Lawrence, J.R., and Hartmann, A., In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1013–1019.

  2. 2

    Baldani, V.L.D., Baldani, J.I., and Döbereiner, J., Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat, Can. J. Microbiol., 1983, vol. 29, pp. 924–929.

  3. 3

    Bashan, Y. and de-Bashan, L.E., How the plant growth-promoting bacterium Azospirillum promotes plant growth–a critical assessment, Adv. Agron., 2010, vol. 108, pp. 77–136.

  4. 4

    Bashan, Y., Levanony, H., and Whitmoyer, R.E., Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd, J. Gen. Microbiol., 1991, vol. 137, pp. 187–196.

  5. 5

    Berg, R.H., Tyler, M.E., Novick, N.J., Vasil, V., and Vasil, I.K., Biology of Azospirillum–sugarcane association: enhancement of nitrogenase activity, Appl. Environ. Microbiol., 1980, vol. 39, pp. 642–649.

  6. 6

    Bogino, P.C., Oliva, M.M., Sorroche, F.G., and Giordano, W., The role of bacterial biofilms and surface components in plant-bacterial associations, Int. J. Mol. Sci., 2013, vol. 14, pp. 15838–15859.

  7. 7

    Döbereiner, J. and Day, J.M., Associative symbiosis in tropical grass: Characterization of microorganisms and dinitrogen fixing sites, Symposium on Nitrogen Fixation, Newton, W.E. and Nijmans, Eds., C.J. Pullman: Washington State Univ. Press, 1976, pp. 518–538.

  8. 8

    Eskew, D.L, Focht, D.D., and Ting, L.P., Nitrogen fixation, denitrification and pleomorphic growth in a highly pigmented Spirillum lipoferum,Appl. Environ. Microbiol., 1977, vol. 34, pp. 582–585.

  9. 9

    Fibach-Paldi, S., Burdman, S., and Okon, Y., Key physiological properties contributing to rhizosphere adaptation and plant growth promoting abilities of Azospirillum brasilense,FEMS Microbiol. Lett., 2012, vol. 326, pp. 99–108.

  10. 10

    Flemming, H.-C. and Wingender, J., The biofilm matrix, Nat. Rev. Microbiol., 2010, vol. 8, pp. 623–633.

  11. 11

    Hunter, R.C. and Beveridge, T.J., High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy, J. Bacteriol., 2005, vol. 187, pp. 7619–7630.

  12. 12

    Madi, L. and Henis, Y., Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion, Plant Soil, 1989, vol. 115, pp. 89–98.

  13. 13

    Malinich, E.A. and Bauer, C.E., Transcriptome analysis of Azospirillum brasilense vegetative and cyst states reveals large-scale alterations in metabolic and replicative gene expression, Microb. Genom., 2018, vol. 4, p. e000200.

  14. 14

    Manual of Methods for General Bacteriology, Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R., and Phillips, G.B., Eds., Washington: Amer. Soc. Microbiol., 1981.

  15. 15

    Muliukin, A.L., Suzina, N.E., Pogorelova, A., Antoniuk, L.P., Duda, V.I., and El’-Registan, G.I., Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense,Microbiology (Moscow), 2009, vol. 78, pp. 33–41.

  16. 16

    Nikitina, V.E., Vetchinkina, E.P., Ponomareva, E.G., and Gogoleva, Y.V., Phenol oxidase activity in bacteria of the genus Azospirillum,Microbiology (Moscow), 2010, vol. 79, pp. 327–333.

  17. 17

    Nur, I., Okon, Y., and Henis, Y., Effect of dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense grown in continuous culture, J. Gen. Microbiol., 1982, vol. 128, pp. 2937–2943.

  18. 18

    O’Toole, G.A. and Kolter, R., Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 1998, vol. 28, pp. 449–461.

  19. 19

    Petrova, L.P., Shelud’ko, A.V., and Katsy, E.I., Plasmid rearrangements and alterations in Azospirillum brasilense biofilm formation, Microbiology (Moscow), 2010, vol. 79, pp. 121–124.

  20. 20

    Pope, L.M. and Wyss, O., Outer layers of the Azotobacter vinelandii cyst, J. Bacteriol., 1970, vol. 102, pp. 234–239.

  21. 21

    Pradedova, E.V., Isheeva, O.D., and Salyaev, R.K., Classification of the antioxidant defense system as the ground for reasonable organization of experimental studies of the oxidative stress in plants, Russ. J. Plant Physiol., 2011, vol. 58, pp. 210–217.

  22. 22

    Ramírez-Mata, A., López-Lara, L.I. Xiqui-Vázquez, L., Jijón-Moreno, S., Romero-Osorio, A., and Baca, B.E., The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense, Res. Microbiol., 2016, vol. 167, pp. 190–201.

  23. 23

    Sadasivan, L. and Neyra, C.A., Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145, J. Bacteriol., 1987, vol. 169, pp. 1670–1677.

  24. 24

    Sadoff H.L., Encystment and germination in Azotobacter vinelandii,Bacteriol. Rev., 1975, vol. 39, pp. 516–539.

  25. 25

    Schelud’ko, A.V., Makrushin, K.V., Tugarova, A.V., Krestinenko, V.A., Panasenko, V.I., Antonyuk, L.P., and Katsy, E.I., Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins, Microbiol. Res., 2009, vol. 164, pp. 149–156.

  26. 26

    Schloter, M. and Hartmann, A., Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies, Symbiosis, 1998, vol. 25, pp. 159–179.

  27. 27

    Shelud’ko, A.V., Filip’echeva, Y.A., Shumilova, E.M., Kh-lebtsov, B.N., Burov, A.M., Petrova, L.P., and Katsy, E.I., Changes in biofilm formation in the nonflagellated flhB1 mutant of Azospirillum brasilense Sp245, Microbiology (Moscow), 2015, vol. 84, pp. 144–151.

  28. 28

    Shelud’ko, A.V., Filip’echeva, Y.A., Telesheva, E.M., Burov, A.M., Evstigneeva, S.S., Burygin, G.L., and Petrova, L.P., Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofilms, Microbiology (Moscow), 2018, vol. 87, pp. 610–620.

  29. 29

    Shelud’ko, A.V., Filip’echeva, Y.A., Telesheva, E.M., Yevstigneeva, S.S., Petrova, L.P., and Katsy, E.I., Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions, World J. Microbiol. Biotechnol., 2019, vol. 35, no. 2, p. 19.

  30. 30

    Shelud’ko, A.V., Shirokov, A.A., Sokolova, M.K., Sokolov, O.I., Petrova, L.P., Matora, L.Yu., and Katsy, E.I., Wheat root colonization by Azospirillum brasilense strains with different motility, Microbiology (Moscow), 2010, vol. 79, pp. 688–695.

  31. 31

    Tarrand, J.J, Krieg, N.R., and Döbereiner, J., A taxonomic study of the Spirillum lipoferum group with description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum braslense sp. nov., Can. J. Microbiol., 1978, vol. 24, pp. 967–980.

  32. 32

    Tugarova, A.V., Shelud’ko, A.V., Dyatlova, Yu.A., Filip’echeva, Yu.A., and Kamnev, A.A., FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610, J. Mol. Struct., 2017, vol. 1140, pp. 142–147.

  33. 33

    Vasil’eva, G.G., Glyan’ko, A.G., Mironova, N.V., Putilina, T.E., and Luzova, G.B., Active oxygen species in pea seedlings during the interactions with symbiotic and pathogenic microorganisms, Appl. Biochem. Microbiol., 2007, vol. 43, pp. 217–221.

  34. 34

    Wang, D., Xu, A., Elmerich, C., and Ma, L.Z., Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions, ISME J., 2017, vol. 11, pp. 1602–1613.

  35. 35

    Wasim, M., Bible, A.N., Xie, Z., and Alexandre, G., Alkyl hydroperoxide reductase has a role in oxidative stress resistance and in modulating changes in cell-surface properties in Azospirillum brasilense Sp245, Microbiology (SGM), 2009, vol. 155, pp. 1192–1202.

Download references


The study was partially supported by the Russian Foundation for Basic Research (project nos. 18-34-00089 and 17-08-01696).

Author information

Correspondence to A. V. Shelud’ko or E. I. Katsy.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies involving animals or human participants performed by the authors.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shelud’ko, A.V., Mokeev, D.I., Evstigneeva, S.S. et al. Cell Ultrastructure in Azospirillum brasilense Biofilms. Microbiology 89, 50–63 (2020).

Download citation


  • biofilms
  • ultrastructure
  • dormant forms
  • desiccation
  • oxidative stress