Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bacterial Communities of Regressive Spots in Ombrotrophic Bogs: Structure and Functions

  • 4 Accesses


This research analyses the structure and functions of bacterial communities of regressive spots in ombrotrophic bogs. Algal biomass was found to predominate in the biomass structure of regressive spots, while fungal mycelial biomass predominated in the layers of non-regressive ombrotrophic bog peat. A number of bacteria in regressive spots determined by direct counts was three to seven times higher than the one in non-regressive ombrotrophic bog peat. Although the Proteobacteria and Acidobacteria predominated in the samples studied, their shares in non-regressive ombrotrophic bog peat were lower. Members of the phylum Verrucomicrobia predominated in the regressive spots, while in non-regressive raised bog peat they were among the minor components. It was found that the epiphytic-saprotrophic bacterial communities were dominated by bacilli during the dry season and by the proteobacteria during the wet season. According to the results of the 16S rRNA gene sequencing, the bacteria found were identified as Chryseobacterium, Stenotrophomonas, Pseudomonas, and Chromobacterium. Physiological activity of the bacterial communities in regressive spots was similar to that of fen peat communities due to abundance of bacteria using easily accessible polymers. Nitrogen-fixing activity of the bacterial communities was found to be significantly higher in regressive spots than in non-regressive ombrotrophic bog peat.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Bakhnov, V.K., Biogeokhimicheskie aspekty bolotoobrazovatel’nogo protsessa (Biogeochemical Aspects of Bog Formation), Novosibirsk: Nauka, 1986.

  2. 2

    Behrendt, U., Ulrich, A., and Schumann, P., Chryseobacterium gregarium sp. nov., isolated from decaying plant material, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1069–1074.

  3. 3

    Belyea, L.R. and Lancaster, J., Inferring landscape dynamics of bog pools from scaling relationship and spatial patterns, J. Ecol., 2002, vol. 90, pp. 223–234.

  4. 4

    Bergey’s Manual of Systematic Bacteriology, 8th ed., vols. 1–2, Holt, J.G., Ed., Baltimore: Williams and Wilkins, 1986.

  5. 5

    Binks, P.R., Nicklin, S., and Bruce, N.C., Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1318–1322.

  6. 6

    Bogdanovskaya-Gienef, I.D., On some regressive phenomena in upland bogs, in Sbornik rabot k 75-letiyu so dnya rozhdeniya akademika V.N. Sukacheva (Collected Works to Academician Sukachev’s 75th Anniversary), Moscow: AN SSSR, 1956, pp. 90–107.

  7. 7

    Bradis, E.M., Bog plant cover as an indicator of their trophic type, in Osnovnye printsipy izucheniya bolotnykh biogeotsenozov (Major Principles of Research on Bog Biogeocenoses), Leningrad: Nauka, 1972, pp. 29–38.

  8. 8

    Dedysh, S.N., Pankratov, T.A., Belova, S.E., Kulichevskaya, I.S., and Liesack, W., Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog, Appl. Environ. Microbiol., 2006, vol. 72, pp. 2110–2117.

  9. 9

    Dobrovol’skaya, T.G., Golovchenko, A.V., and Zvyagintsev, D.G., Analysis of ecological factors limiting the destruction of high moor peat, Euras. Soil Sci., 2014, vol. 47, pp. 182–193.

  10. 10

    Dobrovolskaya, T.G., Golovchenko, A.V., Lysak, L.V., and Zenova, G.M., Fizikokhimiya i biologiya torfa. Metody otsenki chislennosti i raznoobraziya bakterial’nykh i aktinomitsetnykh kompleksov torfyanykh pochv (Physical Chemistry and Biology of Peat. Methods for Assessment of Abundance and Diversity of Bacterial and Actinomycete Complexes in Peat Soils), Tomsk: TGPU, 2010.

  11. 11

    Foster, D.R. and Fritz, S.C., Mire development, pool formation and landscape processes on patterned fens in Dalarna, central Sweden, J. Ecol., 2002, vol. 75, pp. 409–437.

  12. 12

    Hoang, V.A., Kim, Y.J., Nguyen, N.L., and Yang, D.C., Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng fie, Arch. Microbiol., 2013, vol. 195, pp. 463–471.

  13. 13

    Kozhevin, P.A., Polyanskaya, L.M., and Zvyagintsev, D.G., Developmental dynamics of different microorganisms in soil, Mikrobiologiya, 1979, vol. 48, no. 4, pp. 490–494.

  14. 14

    Kulichevskaya, I.S., Danilova, O.V., Tereshina, V.M., Kevbrin, V.V., and Dedysh, S.N., Descriptions of Roseiarcus fermentans gen. nov. sp. nov., a bacteriochlorophyll a-containing fermentative bacterium phylogenetically related to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov., Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 2558–2565.

  15. 15

    Kulichevskaya, I.S., Suzina, N.E., Liesack, W., and Dedysh, S.N., Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemoorganotroph from subdivision 3 of the Acidobacteria,Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 301–306.

  16. 16

    Kwon, S.W., Kim, J.S., Park, I.C., Yoon, S.H., Park, D.H., Lim, C.K., and Go, S.J., Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 21–27.

  17. 17

    Lopatin, V.D., On the principal ecological features of bogs, Russ. J. Ecol., 1997, no. 6, pp. 371–374.

  18. 18

    Mamai, A.V., Stepanov, A.L., and Fedorets, N.G., Microbial transfromation of nitrogen compounds in mid-taiga soils, Vestn. Mos. Univ., Ser. 17.Soil Sci., 2013, no. 4, pp. 32–38.

  19. 19

    Manucharova, N.A., Vlasenko, A.N., Tourova, T.P., Panteleeva, A.N., Stepanov, A.L., and Zenova, G.M., Thermophilic chitinolytic microorganisms of brown semidesert soil, Microbiology (Moscow), 2008, vol. 77, pp. 610–615.

  20. 20

    Metody pochvennoi biokhimii i mikrobiologii (Methods of Soil Biochemistry and Microbiology), Moscow: Mos. Gos. Univ., 1991.

  21. 21

    Pankratov, T.A. and Dedysh, S.N., Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2951–2959.

  22. 22

    Sangwan, P., Chen, X., Hugenholtz, P., and Janssen, P.H., Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov. of the phylum Verrucomicrobia,Appl. Environ. Microbiol., 2004, vol. 70, pp. 5875–5881.

  23. 23

    Serkebaeva, Y.M., Kim, Y., Liesack, I.V., and Dedysh, S.N., Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions, PLoS One, 2013, vol. 8, no. 5: e63994.

  24. 24

    Shcherbakov, A.V., Bragina, A.V., Kuzmina, E.Yu., Berg, Ch., Muntyan, A.N., Makarova, N.M., Malfanova, N.V., Cardina-le, M., Berg, G., Chebotar, V.K., and Tikhonovich, I.A., Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbiology, Microbiology (Moscow), 2013, vol. 82, pp. 306–315.

  25. 25

    Umarov, M.M., Kurakov, A.V., and Stepanov, A.L., Mikrobiologicheskaya transformatsiya azota v pochve (Microbial Transformation of Nitrogen in Soil), Moscow: Geos, 2007.

  26. 26

    Vandamme, P., Bernardet, J.F., Segers, P., Kerssters, K., and Holmes, B., New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov. and Empedobacter norn. rev., Int. J. Syst. Bacteriol., 1994, vol. 44, pp. 827–831.

  27. 27

    Vomperskii, S.E., Sirin, A.A., and Glukhov, A.I., Formirovanie i rezim stoka pri gidrolesomelioratsii (Formation and Regime of Run-off during Hydro-Forest Melioration), Moscow: Nauka, 1988.

  28. 28

    Wolf, A., Fritze, A., Hagemann, M., and Berg, G., Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1937–1944.

  29. 29

    Yakushev, A.V., Integral structural-functional method for characterizing microbial populations, Euras. Soil Sci., 2015, vol. 48, pp. 378–394.

Download references


The work was supported by the Russian Foundation for Basic Research, project no. 16-04-00452-a.

Author information

Correspondence to T. G. Dobrovolskaya.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dobrovolskaya, T.G., Golovchenko, A.V., Yurchenko, E.N. et al. Bacterial Communities of Regressive Spots in Ombrotrophic Bogs: Structure and Functions. Microbiology 89, 107–114 (2020).

Download citation


  • ombrotrophic bog
  • regressive spots
  • bacterial communities
  • microbial abundance
  • taxonomic composition
  • ecological functions
  • nitrogen fixation