Advertisement

Microbiology

, Volume 87, Issue 6, pp 842–847 | Cite as

Cold-Adapted Bacterial Diversity in Mingyong Glacier based on Combination Analysis of Fatty Acids and 16S rRNA Gene Sequence

  • W. Sun
  • W. Li
  • X. Ji
  • H. Li
  • K. Qin
  • Y. Wei
EXPERIMENTAL ARTICLES
  • 13 Downloads

Abstract

The Mingyong Glacier is located in the northwest of Yunnan Province, China. The area, including the cold temperate zone, the middle temperate zone, and the warm temperate zone, is a typical vertical climate zone. To explore new classification and identification methods for cold-adapted bacteria in this area, the Sherlock automated microbial identification system (MIDI, Inc., Newark, DE, United States) and 16S rRNA gene sequencing was used. Phylogenetic analysis showed that for cold-adapted bacteria the analysis by unsaturated fatty acids in membranes provided more precise taxonomic information than 16S rRNA gene analysis, which is sensitive enough to distinguish cold-adapted bacteria at the same genus level. The results also demonstrated that the proportion of unsaturated fatty acids in those cold-adapted bacterial cell membranes was inversely proportional to temperature. Although most of the unsaturated fatty acid composition was similar to other reported cold-adapted bacteria, the fatty acid composition of some of the cold-adapted bacteria was not the same, which warrants further study.

Keywords:

gas chromatography fatty acid bacterial identification mingyong glacier vertical climate zones 

REFERENCES

  1. 1.
    Abed, R.M.M., Klempová, T., Gajdoš, P., and Čertík, M., Bacterial diversity and fatty acid composition of hypersaline cyanobacterial mats from an inland desert wadi, J. Arid Environ., 2015, vol. 115, pp. 81–89.CrossRefGoogle Scholar
  2. 2.
    Abidin, S.Z., Patel, D., and Saha, B., Quantitative analysis of fatty acids composition in the used cooking oil (UCO) by gas chromatography–mass spectrometry (GC–MS), Can. J. Chemeng., 2013, vol. 91, no. 12, pp. 1896–1903.CrossRefGoogle Scholar
  3. 3.
    Ahumadarudolph, R., Cajasmadriaga, D., Rudolph, A., Reinoso, R., Torres, C., Silva, M., and Becerra, J., Variation of sterols and fatty acids as an adaptive response to changes in temperature, salinity and pH of a marine fungus Epicoccum nigrum isolated from the Patagonian Fjords, Rev. Biol. Mar. Oceanog., 2014, vol. 49, no. 49, pp. 293–305.CrossRefGoogle Scholar
  4. 4.
    Bousfield, I.J., Smith, G.L., Dando, T.R., and Hobbs, G., Numerical analysis of total fatty acid profiles in the identification of coryneform, nocardioform and some other bacteria, Microbiology (UK), 1983, vol. 129, no. 129, pp. 375–394.CrossRefGoogle Scholar
  5. 5.
    Boyd, E.S., Lange, R.K., Mitchell, A.C., Havig, J.R., Hamilton, T.L., Lafrenière, M.J., Shock, E.L., Peters, J.W., and Skidmore, M., Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem, Appl. Environ. Microbiol., 2011, vol. 77, no. 14, pp. 4778–4787.CrossRefGoogle Scholar
  6. 6.
    Caro, I., Bécares, G., Fuentes, L., Garciaarmesto, M.R., Rúa, J., Castro, J.M., Quinto, E.J., and Mateo, J., Evaluation of three PCR primers based on the 16S rRNA gene for the identification of lactic acid bacteria from dairy origin, Cyta-J. Food, 2015, vol. 13, no. 2, pp. 181–187.CrossRefGoogle Scholar
  7. 7.
    Chao, J., Wolfaardt, G.M., and Arts, M.T., Characterization of Pseudomonas aeruginosa fatty acid profiles in biofilms and batch planktonic cultures, Can. J. Microbiol., 2010, vol. 56, no. 12, pp. 1028–1039.CrossRefGoogle Scholar
  8. 8.
    Doumenq, P., Acquaviva, M., Asia, L., Durbec, J.P., Dréau, Y.L., Mille, G., and Bertrand, J.C., Changes in fatty acids of Pseudomonas nautica, a marine denitrifying bacterium, in response to n-eicosane as carbon source and various culture conditions, FEMS Microbiol. Ecol., 1999, vol. 28, no. 2, pp. 151–161.CrossRefGoogle Scholar
  9. 9.
    Freese, E., Sass, H., Rütters, H., Schledjewski, R., and Rullkötter, J., Variable temperature-related changes in fatty acid composition of bacterial isolates from German Wadden sea sediments representing different bacterial phyla, Org. Geochem., 2008, vol. 39, no. 10, pp. 1427–1438.CrossRefGoogle Scholar
  10. 10.
    García-Descalzo, L., García-López, E., Postigo, M., Baquero, F., Alcazar, A., and Cid, C., Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers, Front. Microbiol., 2013, vol. 4, p. 55.CrossRefGoogle Scholar
  11. 11.
    Heipieper, H.J., Adaptation of Escherichia coli to ethanol on the level of membrane fatty acid composition, Appl. Environ. Microbiol., 2005, vol. 71, no. 6, p. 3388.CrossRefGoogle Scholar
  12. 12.
    Jiang, D., Zhou, X., Tian, X., Wu, Z., and Li, Y., Phylogenetic analysis of the 16S rRNA and HSP60 gene sequences of the morphology-based taxa of myxobacteria, Acta Microbiol. Sinica, 2008, vol. 48, no. 6, p. 711.Google Scholar
  13. 13.
    Kobayashi, T., Uchimura, K., Deguchi, S., and Horikoshi, K., Cloning and sequencing of inulinase and β-fructofuranosidase genes of a deep-sea Microbulbifer species and properties of recombinant enzymes, Appl. Environ. Microbiol., 2012, vol. 78, no. 7, pp. 2493–2495.CrossRefGoogle Scholar
  14. 14.
    Krishnan, A., Convey, P., Gonzalez-Rocha, G., and Alias, S.A., Production of extracellular hydrolase enzymes by fungi from King George Island, Polar Biol., 2016, vol. 39, no. 1, pp. 65–76.CrossRefGoogle Scholar
  15. 15.
    Liu, Z.W., Zeng, X.A., Ngadi, M., and Han, Z., Effect of cell membrane fatty acid composition of Escherichia coli on the resistance to pulsed electric field (PEF) treatment, LWT-Food Sci. Technol., 2017, vol. 76, pp. 18–25.CrossRefGoogle Scholar
  16. 16.
    Louesdon, S., Charlot-Rougé, S., Tourdot-Maréchal, R., Bouix, M., and Béal, C., Membrane fatty acid composition and fluidity are involved in the resistance to freezing of Lactobacillus buchneri R1102 and Bifidobacterium longum R0175, Microb. Biotechnol., 2015, vol. 8, no. 2, pp. 311–318.CrossRefGoogle Scholar
  17. 17.
    Lund, E.D., Chu, F.L.E., and Harvey, E., In vitro effects of temperature and salinity on fatty acid synthesis in the oyster protozoan parasite Perkinsus marinus, J. Exp. Mar. Biol. Ecol., 2004, vol. 307, no. 1, pp. 111–126.CrossRefGoogle Scholar
  18. 18.
    Margesin, R., and Miteva, V., Diversity and ecology of psychrophilic microorganisms, Res. Microbiol., 2011, vol. 162, no. 3, p. 346.CrossRefGoogle Scholar
  19. 19.
    Maulucci, G., Cohen, O., Daniel, B., Sansone, A., Petropoulou, P.I., Filou, S., Spyridonidis, A., Pani, G., Spirito, M.D., and Chatgilialoglu, C., Fatty acid-related modulations of membrane fluidity in cells: detection and implications, Free Radical Res., 2016, p. 1.Google Scholar
  20. 20.
    Miremadi, F., Ayyash, M., Sherkat, F., and Stojanovska, L., Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria, J. Funct. Foods, 2014, vol. 9, no. 7, pp. 295–305.CrossRefGoogle Scholar
  21. 21.
    Miteva, V., Teacher, C., Sowers, T., and Brenchley, J., Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates, Environ. Microbiol., 2009, vol. 11, no. 3, pp. 640–656.CrossRefGoogle Scholar
  22. 22.
    Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., Kanda, H., Kanekiyo, A., Kohara, Y., Koi, A., and Nakamura, K., Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses, Polar Biol., 2012, vol. 35, no. 3, pp. 425–433.CrossRefGoogle Scholar
  23. 23.
    Park, J.M., Kwon, S.H., Han, Y.M., Hahm, K.B., and Kim, E.H., Omega-3 polyunsaturated fatty acids as potential chemopreventive agent for gastrointestinal cancer, J. Cancer Prev., 2013, vol. 18, no. 3, pp. 201–208.CrossRefGoogle Scholar
  24. 24.
    Rosa, S.D., Milone, A., Kujumgiev, A., Stefanov, K., Nechev, I., and Popov, S., Metabolites from a marine bacterium Pseudomonas/Alteromonas, associated with the sponge Dysidea fragilis, Comp. Biochem. Physiol., 2000, vol. 126, no. 3, pp. 391–396.CrossRefGoogle Scholar
  25. 25.
    Satyanarayana, T., Raghukumar, C., and Shivaji, S., Extremophilic microbes: diversity and perspectives, Curr. Sci. India, 2005, vol. 89, no. 1, pp. 78–90.Google Scholar
  26. 26.
    Shen, L., Yao, T., Liu, Y., Jiao, N., Kang, S., Xu, B., Zhang, S., and Liu, X., Downward-shifting temperature range for the growth of snow-bacteria on glaciers of the Tibetan Plateau, Geomicrobiol. J., 2014, vol. 31, no. 9, pp. 779–787.CrossRefGoogle Scholar
  27. 27.
    Si, H.K. and Shin, J.H., Identification of nontuberculous mycobacteria using multilocous sequence analysis of 16S rRNA, hsp65, and rpoB, J. Clin. Lab. Anal., 2017, p. e22184.Google Scholar
  28. 28.
    Si, J.P., Choi, J.I., and Sang, Y.L., Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates, Enzyme Microb. Technol., 2005, vol. 36, no. 4, pp. 579–588.CrossRefGoogle Scholar
  29. 29.
    Simon, C., Wiezer, A., Strittmatter, A.W., and Daniel, R., Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome, Appl. Environ. Microbiol., 2009, vol. 75, no. 23, pp. 7519–7526.CrossRefGoogle Scholar
  30. 30.
    Takeuchi, N., Glacial ecosystems, in Encyclopedia. Snow, Ice and Glaciers, Springer, 2011.Google Scholar
  31. 31.
    Viles, H.A., Microbial geomorphology: a neglected link between life and landscape, Geomorphology, 2012, vols. 157–158, no. 6, pp. 6–16.CrossRefGoogle Scholar
  32. 32.
    Wahl, H.G., Habel, S.Y., Schmieder, N., and Liebich, H.M., Identification of cis/trans isomers of methyl ester and oxazoline derivatives of unsaturated fatty acids using GC-FTIR-MS, J. Sep. Sci., 2015, vol. 17, no. 7, pp. 543–548.Google Scholar
  33. 33.
    Weng, D. and Zhang J., Identification and evaluation of fatty acid in seed oils from two species of Vitis family, J. Jiangsu Inst. Educ., 2006, vol. 23, no. 1, pp. 7–9.Google Scholar
  34. 34.
    Yoon, Y., Lee, H., Lee, S., Kim, S., and Choi, K.H., Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses, Food Res. Int., 2015, vol. 72, pp. 25–36.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Life Science and Technology, Kunming University of Science and TechnologyKunmingChina

Personalised recommendations