Advertisement

Microbiology

, Volume 87, Issue 6, pp 783–795 | Cite as

Members of the Uncultured Taxon OP1 (“Acetothermia”) Predominate in the Microbial Community of an Alkaline Hot Spring at East-Tuvinian Upland

  • A. A. Korzhenkov
  • A. V. Teplyuk
  • A. V. Lebedinsky
  • A. A. Khvashchevskaya
  • Yu. G. Kopylova
  • K. D. Arakchaa
  • P. N. Golyshin
  • E. A. Lunev
  • O. V. Golyshina
  • I. V. Kublanov
  • S. V. Toshchakov
  • S. N. Gavrilov
EXPERIMENTAL ARTICLES
  • 27 Downloads

Abstract

The thermophilic microbial community of a hydrotherm at East-Tuvinian upland is described. High-throughput profiling of the 16S rRNA gene and sequencing of the complete metagenome were used to characterize the phylogenetic and metabolic diversity of the microbial community of the Dikij Arjaan alkaline thermal spring of Ush-Bel’dir mineral water deposit in Tyva, Russia. Members of the uncultured phylum “Acetothermia” (candidate division OP1) predominated in the microbial community of the spring. While this phylum has already been detected in many thermal ecosystems, it never formed the main component of their microbial communities. Apart from “Acetothermia”, members of Nitrospirae and Chloroflexi comprised a significant part of the microbial community. Comparative analysis of our geochemical data on the spring and the previously published data on in silico reconstruction of “Acetothermia” metabolism led us to the suggestion that carbonate and bicarbonate can serve as the major carbon sources for the dominant bacterial group and that “Acetothermia” act as the primary producers in this ecosystem. Analysis of the functional genes also revealed the presence of physiological groups of denitrifyers, iron reducers, carboxydotrophs and diazotrophs. This is the first report on a thermophilic microbial community of a hydrotherm from the southwestern extremity of the Baikal rift zone. Moreover, microbial communities with predominance of uncultured “Acetothermia” have not been reported previously in terrestrial hydrotherms.

Keywords:

uncultured bacteria OP1 Acetothermia new acetyl-CoA synthases terrestrial hydrotherms East-Tuvinian Upland 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, projects nos. 16-54-76022 and 16-54-10072, and the UK-funded joint UK-Russia Project “Novel microorganisms and new enzymes from the Baikal Rift Zone” (grant no. IE160224). The search for Fe(III) reductase, acetyl-CoA synthase, CO dehydrogenase, and hydrogenase genes in the metagenome of the Dikij Arjaan spring was performed within the framework of the Russian Science Foundation Project no. 17-74-30025.

REFERENCES

  1. 1.
    Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K.L., Tyson, G.W., and Nielsen, P.H., Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes, Nature Biotechnol., 2013, vol. 31, no. 6, p. 533.CrossRefGoogle Scholar
  2. 2.
    Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J., Zech, X., Kightley, E., Thompson, L., Hyde, E., Gonzalez, A., and Knight, R., Deblur rapidly resolves single-nucleotide community sequence patterns, mSystems, 2017, vol. 7, no. 2, p. e00191–16.Google Scholar
  3. 3.
    Duchkov, A.D., Rychkova, K.M., Lebedev, V.I., Kamenskii, I.L., and Sokolova, L.S., Estimation of heat flow in Tuva from data on helium isotopes in thermal mineral springs, Russ. Geol. Geophys., 2010, vol. 51, no. 2, pp. 209–219.CrossRefGoogle Scholar
  4. 4.
    Elshahed, M.S., Senko, J.M., Najar, F.Z., Kenton, S.M., Roe, B.A., Dewers, T.A., Spear, J.R., and Krumholz, L.R., Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring, Appl. Environ. Microbiol., 2003, vol. 69, no. 9, pp. 5609–5621.CrossRefGoogle Scholar
  5. 5.
    Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., and Ravel, J., An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform, Microbiome, 2014, vol. 2, no. 1, p. 6.CrossRefGoogle Scholar
  6. 6.
    Frank, Y.A., Kadnikov, V.V., Gavrilov, S.N., Banks, D., Gerasimchuk, A.L., Podosokorskaya, O.A., Merkel, A.Y., Chernyh, N.A., Mardanov, A.V., Ravin, N.V., Karnachuk, O.V., and Bonch-Osmolovskaya, E.A., Stable and variable parts of microbial community in Siberian deep subsurface thermal aquifer system revealed in a long-term monitoring study, Front. Microbiol., 2016, vol. 7, p. 2101.Google Scholar
  7. 7.
    Geissinger, O., Herlemann, D.P., Mörschel, E., Maier, U.G., and Brune, A., The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum, Appl. Environ. Microbiology., 2009, vol. 75, no. 9, pp. 2831–2840.CrossRefGoogle Scholar
  8. 8.
    Hu, P., Tom, L., Singh, A., Thomas, B.C., Baker, B.J., Piceno, Y.M., Andersen, G.L., and Banfield, J.F., Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs, MBio, 2016, vol. 7, no. 1, p. e01669–15.Google Scholar
  9. 9.
    Hugenholtz, P., Goebel, B.M., and Pace, N.R., Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity, J. Bacteriol., 1998, vol. 180, no. 18, pp. 4765–4774.Google Scholar
  10. 10.
    Hyatt, D., LoCascio, P.F., Hauser, L.J., and Uberbacher, E.C., Gene and translation initiation site prediction in metagenomic sequences, Bioinformatics, 2012, vol. 28, no. 17, pp. 2223–2230.CrossRefGoogle Scholar
  11. 11.
    Kalashnikov, A.M., Gaisin, V.A., Sukhacheva, M.V., Namsaraev, B.B., Panteleeva, A.N., Nuyanzina-Boldareva, E.N., Kuznetsov, B.B., and Gorlenko, V.M., Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk thermal spring (Baikal area, Russia), Microbiology (English translation of Mikrobiologiya), 2014, vol. 83, no. 4, pp. 398–407.CrossRefGoogle Scholar
  12. 12.
    Kompantseva, E.I. and Gorlenko, V.M., Phototrophic communities in some Lake Baikal thermal springs, Mikrobiologiya, 1988, vol. 57, no. 5, p. 841.Google Scholar
  13. 13.
    Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nature Methods, 2012, vol. 9, no. 4, p. 357.CrossRefGoogle Scholar
  14. 14.
    Logachev, N.A., History and geodynamics of the Baikal rift, Geol. Geofiz., 2003, vol. 44, no. 5, pp. 391–406.Google Scholar
  15. 15.
    McMurdie, P.J. and Holmes, S., Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data, PLoS One, 2013, vol. 8, no. 4, p. e61217.CrossRefGoogle Scholar
  16. 16.
    Merkel, A.Y., Korneeva, V.A., Tarnovetskii, I.Yu., Bryukhanov, A.L., Chasovnikov, V.K., Taranov, E.A., Toshchakov, S.V., and Pimenov, N.V., Structure of the archaeal community in the Black Sea photic zone, Microbiology (English translation of Mikrobiologiya), 2015, vol. 84, no. 4, pp. 561–570.CrossRefGoogle Scholar
  17. 17.
    Mori, K., Yamaguchi, K., Sakiyama, Y., Urabe, T., and Suzuki, K.I., Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov., Int. J. Syst. Evol. Microbiol. 2009, vol. 59, no. 11, pp. 2894–2898.CrossRefGoogle Scholar
  18. 18.
    Namsaraev, Z.B., Gorlenko, V.M., Namsaraev, B.B., Buryukhaev, S.P., and Yurkov, S.P., The structure and biogeochemical activity of the phototrophic communities from the Bol’sherechenskii alkaline hot spring, Microbology (English translation of Mikrobiologiya), 2003, vol. 72, no. 2, pp. 187–193.Google Scholar
  19. 19.
    Neubeck, A., Sun, L., Müller, B., Ivarsson, M., Hosgörmez, H., Özcan, D., Broman, C., and Schnürer, A., Microbial community structure in a serpentine-hosted abiotic gas seepage at the Chimaera ophiolite, Turkey, Appl. Environ. Microbiol., 2017, vol. 83, no. 12, p. e03430–16.CrossRefGoogle Scholar
  20. 20.
    Nunoura, T., Takaki, Y., Kakuta, J., Nishi, S., Sugahara, J., Kazama, H., Chee, G.J., Hattori, M., Kanai, A, Atomi, H, Takai, K, and Takami, H., Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group, Nucleic Acids Res., 2010, vol. 39, no. 8, pp. 3204–3223.CrossRefGoogle Scholar
  21. 21.
    Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A., MetaSPAdes: a new versatile metagenomic assembler, Genome Res., 2017, vol. 27, no. 5, pp. 824–834.CrossRefGoogle Scholar
  22. 22.
    Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res. 2015, p. gr. 186072.114.Google Scholar
  23. 23.
    Pinneker, E.V., Mineral’nye vody Tuvy (Tuva Mineral Waters), Kyzyl: Tuv. Kn. Izd., 1968.Google Scholar
  24. 24.
    Podosokorskaya, O.A., Bonch-Osmolovskaya, E.A., Novikov, A.A., Kolganova, T.V., and Kublanov, I.V., Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae, Int. J. Syst. Evol. Microbiol., 2013a, vol. 63, no. 1, pp. 86–92.CrossRefGoogle Scholar
  25. 25.
    Podosokorskaya, O.A., Kadnikov, V.V., Gavrilov, S.N., Mardanov, A.V., Merkel, A.Y., Karnachuk, O.V., Ravin, N.V., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae, Environ. Microbiol., 2013b, vol. 15, no. 6, pp. 1759–1771.CrossRefGoogle Scholar
  26. 26.
    Posokorskaya, O.A., Bonch-Osmolovskaya, E.A., Beskorovaynyy, A.V., Toshchakov, S.V., Kolganova, T.V., and Kublanov, I.V., Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, no. 8, pp. 2657–2661.CrossRefGoogle Scholar
  27. 27.
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 2012, vol. 41, no. D1, pp. D590–D596.CrossRefGoogle Scholar
  28. 28.
    Radnagurueva, A.A., Lavrentieva, E.V., Budagaeva, V.G., Barkhutova, D.D., Dunaevsky, Y.E., and Namsaraev, B.B., Organotrophic bacteria of the Baikal rift zone hot springs, Microbology (English translation of Mikrobiologiya), 2016, vol. 85, no. 3, pp. 367–379.CrossRefGoogle Scholar
  29. 29.
    The Prokaryotes Alphaproteobacteria and Betaproteobacteria, Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Eds., Berlin: Springer, 2014a, p. 759.Google Scholar
  30. 30.
    Other major lineages of Bacteria and the Archaea. The Phylum Chloroflexi, the family Chloroflexaceae, and the related phototrophic families Oscillochloridaceae and Roseiflexaceae, in The Prokaryotes, Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F., Eds., Berlin: Springer, 2014b, pp. 515–532.Google Scholar
  31. 31.
    Simon, J. and Klotz, M.G., Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations, Biochim. Biophys. Acta-Bioenergetics, 2013, vol. 1827, no. 2, pp. 114–135.CrossRefGoogle Scholar
  32. 32.
    Slobodkina, G.B., Panteleeva, A.N., Beskorovaynaya, D.A., Bonch-Osmolovskaya, E.A., and Slobodkin, A.I., Thermostilla marina gen. nov., sp. nov., a thermophilic, facultatively anaerobic planctomycete isolated from a shallow submarine hydrothermal vent, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, no. 2, pp. 633–638.CrossRefGoogle Scholar
  33. 33.
    Takami, H., Noguchi, H., Takaki, Y., Uchiyama, I., Toyoda, A., Nishi, S., Chee, G.J., Arai, W., Nunoura, T., Itoh, T., Hattori, M., and Takai, K., A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem, PLoS One, 2012, vol. 7, no. 1, p. e30559.CrossRefGoogle Scholar
  34. 34.
    Tamaki, H., Tanaka, Y., Matsuzawa, H., Muramatsu, M., Meng, X.Y., Hanada, S., Mori, K., and Kamagata, Y., Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, no. 6, pp. 1442–1447.CrossRefGoogle Scholar
  35. 35.
    Van Der Maaten, L. and Hinton, G., Visualizing high-dimensional data using t-sne, J. Mach. Learn. Res., 2008, vol. 9, p. 26.Google Scholar
  36. 36.
    Vignais, P.M. and Billoud, B., Occurrence, classification, and biological function of hydrogenases: an overview, Chem. Rev., 2007, vol. 107, no. 10, pp. 4206–4272.CrossRefGoogle Scholar
  37. 37.
    Zarafeta, D., Moschidi, D., Ladoukakis, E., Gavrilov, S.N., Chrysina, E.D., Chatziioannou, A., Kublanov, I.V., Skretas, G., and Kolisis, F.N., Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases, Sci. Rep., 2016, vol. 6, p. 38886.CrossRefGoogle Scholar
  38. 38.
    Zelenkina, T.S., Eshinimayev, B.Ts., Dagurova, O.P., Suzina, N.E., Namsarayev, B.B., and Trotsenko, Yu.A., Aerobic methanotrophs from the coastal thermal springs of Lake Baikal, Microbology (English translation of Mikrobiologiya), 2009, vol. 78, no. 4, pp. 483−492.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Korzhenkov
    • 1
  • A. V. Teplyuk
    • 1
  • A. V. Lebedinsky
    • 2
  • A. A. Khvashchevskaya
    • 3
  • Yu. G. Kopylova
    • 3
  • K. D. Arakchaa
    • 4
  • P. N. Golyshin
    • 5
  • E. A. Lunev
    • 1
  • O. V. Golyshina
    • 5
  • I. V. Kublanov
    • 2
  • S. V. Toshchakov
    • 2
  • S. N. Gavrilov
    • 2
  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscowRussia
  3. 3.Tomsk Polytechnic UniversityTomskRussia
  4. 4.Research Institute of Medico-Social Problems of Tyva RepublicKyzylRussia
  5. 5.Bangor UniversityGwyneddUnited Kingdom

Personalised recommendations