Advertisement

Microbiology

, Volume 87, Issue 6, pp 833–841 | Cite as

Comparative Analysis of the Structure of Buried and Surface Soils by Analysis of Microbial DNA

  • T. I. Chernov
  • A. D. Zhelezova
  • O. V. Kutovaya
  • A. O. Makeev
  • A. K. Tkhakakhova
  • N. A. Bgazhba
  • F. G. Kurbanova
  • A. V. Rusakov
  • T. A. Puzanova
  • O. S. Khokhlova
EXPERIMENTAL ARTICLES
  • 11 Downloads

Abstract

The microbiomes of the soils buried under earthwork structures of different age (burial mounds and defensive earth walls) and of surface soils were investigated. Microbial DNA was analyzed by quantitative PCR and sequencing of the 16S rRNA gene amplicons. Both microbial abundance and diversity in buried soils were found to be lower. The taxonomic structure of the buried soil microbiomes differed significantly from that of surface soils: the share of the bacterial phylum Verrucomicrobia was very low. The thickness of the earthwork structure should be sufficient to isolate soil from the effect of plant roots; otherwise, the microbiome may exhibit virtually no difference from that of surface soils. The degree of mineralization of stored organic matter (in the absence of inflow of fresh organic compounds) is probably the main factor affecting the structure of microbial communities in buried soils. The study did not reveal any properties of the microbiomes usable as markers of the type of buried soils.

Keywords:

burial mounds paleosols soil microbiome structure DNA 16S rRNA Verrucomicrobia 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation. Field research and sample preparation were financed via project no. 16-17-10280, and microbiological analysis, via project no. 17-16-01057. Experiments were performed using the equipment of the Collective Use Center “Genome Technologies, Proteomics, and Cell Biology” of the Research Institute of Agricultural Microbiology and the Collective Use Center “Functions and Properties of Soils and Soil Cover” of the Dokuchaev Institute.

REFERENCES

  1. 1.
    Akimova, E.S., Gumenko, R.S., Vershinina, Z.R., Baymiev, A.K., and Baymiev, A.K. Genetic markers for search of rhizobia based on symbiotic genes, Microbiology (Moscow), 2017, vol. 86, pp. 640‒646.CrossRefGoogle Scholar
  2. 2.
    Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Manual on Chemical Analysis of Soils), Moscow: Mos. Gos. Univ., 1970.Google Scholar
  3. 3.
    Arkhangel’skaya, T.A., Prokhorov, M.V., and Mazirov, M.A., Annual temperature dynamics of arable soils in paleokryogenic complexes of Vladimir Opol’e, Kriosfera Zemli, 2008, no. 3, pp. 80–86.Google Scholar
  4. 4.
    Blagodatskaya, E.V., Khokhlova, O.S., Anderson, T.H., and Blagodatskii, S.A., Extractable microbial DNA pool and microbial activity in paleosols of Southern Urals, Microbiology (Moscow). 2003, vol. 72, pp. 750‒755.CrossRefGoogle Scholar
  5. 5.
    Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114‒2120.CrossRefGoogle Scholar
  6. 6.
    Borisov, A.V., Demkina, T.S., and Demkin, V.A., Paleopochvy i klimat Ergenei v epokhu bronzy IV–II tysyacheletiya do n.e. (Ergeny Paleosolis and Climate in the Bronze Epoch, IV–II Millennia BC), Moscow: Nauka, 2006.Google Scholar
  7. 7.
    Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger,K., Bushman, F.D., Costello, E.K., Fierer, N., Gonzalez Peña, A., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., et al., QIIME allows analysis of high throughput community sequencing data, Nature Methods, 2010, vol. 7, pp. 335–336.CrossRefGoogle Scholar
  8. 8.
    Chandler, D.P., Brockman, F.J., Bailey, T.J., and Fredrickson, J.K., Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol, Microb. Ecol., 1998, vol. 36, pp. 37‒50.CrossRefGoogle Scholar
  9. 9.
    Chernov, T.I., Tkhakakhova, A.K., and Kutovaya, O.V., Assessment of diversity indices for the characterization of the soil prokaryotic community by metagenomic analysis, Euras. Soil Sci., 2015, vol. 48, pp. 410‒415.CrossRefGoogle Scholar
  10. 10.
    Collwell, R.K. and Coddington, J.A., Estimating terrestrial biodiversity through extrapolation, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1994, vol. 345, no. 1311, pp. 101–118.CrossRefGoogle Scholar
  11. 11.
    Demkin, V.A., Borisov, A.V., Demkina, T.S., Khomutova, T.E., Zolotareva, B.N., Kashirskaya, N.N., and Demkina, E.V., Steppe pyramids in Eurasia: a unique archive of Holocene paleosoils, Paleosoils and indicators of continental erosion in the history of the biosphere, Ser. (Geobiological Systems in the Past), Moscow: PIN RAN, 2010, pp. 132–163.Google Scholar
  12. 12.
    Demkina, T.S., Khomutova, T.E., Kashirskaya, N.N., Stretovich, I.V., and Demkin, V.A., Characteristics of microbial communities in steppe paleosols buried under kurgans of the Sarmatian time (I−IV centuries AD), Euras. Soil Sci., 2009, vol. 42, pp. 778‒787.CrossRefGoogle Scholar
  13. 13.
    Fierer, N., Ladau, J., Clemente, J.C., Leff, J.W., Owens, S.M., Pollard, K.S., Knight, R., Gilbert, J.A., and McCulley, R.L., Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States, Science, 2013, vol. 342, pp. 621–624.CrossRefGoogle Scholar
  14. 14.
    Huang, Y.T., Lowe, D.J., Zhang, H., Cursons, R., Young, J.M., Churchman, G.J., Schipper, L.A., Rawlence, N.J., Wood, J.R., and Cooper, A., A new method to extract and purify DNA from allophanic soils and paleosols, and potential for paleoenvironmental reconstruction and other applications, Geoderma, 2016, vol. 274, pp. 114‒125.CrossRefGoogle Scholar
  15. 15.
    Ivanov, I.V., Pesochina, L.S., and Semenov, V.M., Biological mineralization of organic matter in the modern virgin and plowed chernozems, buried chernozems, and fossil chernozems, Euras. Soil Sci., 2009, vol. 42, pp. 1109‒1119.CrossRefGoogle Scholar
  16. 16.
    Kant, R., Van Passel, M.W., Palva, A., Lucas, S., Lapidus, A., del Rio, T.G., Dalin, E., Tice, H., Bruce, D., Goodwin, L., Pitluck, S., Larimer, F.W., Land, M.L., Hauser, L., Sangwan, P., et al., Genome sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil bacterium, J. Bacteriol., 2011, vol. 193, pp. 2902–2903.CrossRefGoogle Scholar
  17. 17.
    Khomutova, T.E., Demkina, T.S., and Demkin, V.A., Estimation of the total and active microbial biomasses in buried subkurgan paleosoils of different age, Microbiology (Moscow), 2004, vol. 73, pp. 196‒201.CrossRefGoogle Scholar
  18. 18.
    Khomutova, T.E., Demkina, T.S., Borisov, A.V., Kashirskaya, N.N., Yeltsov, M.V., and Demkin, V.A., An assessment of changes in properties of steppe kurgan paleosoils in relation to prevailing climates over recent millennia, Quaternary Res., 2007, vol. 67, pp. 328‒336.CrossRefGoogle Scholar
  19. 19.
    Lozupone, C., Lladser, M.E., Knights, D., Stombaugh, J., and Knight, R., UniFrac: an effective distance metric for microbial community comparison, ISME J., 2011, vol. 57, pp. 169–172.CrossRefGoogle Scholar
  20. 20.
    Makeev, A., Aseeva, E., Rusakov, A., Sorokina, K., Puzanova, T., Khokhlova, O., Kust, P., Kurbanova, F., Chernov, T., Kutovaya, O., Lebedeva, M., and Mihailov, E., The environment of the Early Iron Age at the southern fringe of the forest zone of the Russian Plain, Quaternary Int., 2018. doi 10.1016/j.quaint.2018.04.002CrossRefGoogle Scholar
  21. 21.
    Marfenina, O.E., Sakharov, D.S., Ivanova, A.E., and Rusakov, A.V., Mycological complexes in Holocene and Late Pleistocene paleohorizons and in fragments of paleosols, Euras. Soil Sci., 2009, vol. 42, pp. 432‒439.CrossRefGoogle Scholar
  22. 22.
    Mitusov, A.V., Mitusova, O.E., Pustovoytov, K., Lubos, C.M., Dreibrodt, S., and Bork, H.R., Palaeoclimatic indicators in soils buried under archaeological monuments in the Eurasian steppe: a review, Holocene, 2009, vol. 19, pp. 1153‒1160.CrossRefGoogle Scholar
  23. 23.
    Polevoi opredelitel’ pochv Rossii (Field Guide for Identification of Russian Soils), Moscow: Dokuchaev Soil Inst., 2008.Google Scholar
  24. 24.
    Ryabogina, N.E. and Yakimov, A.S., Palinological and paleosoil research at historical sites: analysis of possibilities and methods of the work, Vestn. Arkheol. Antropol. Etnogr., 2010, no. 2, pp. 189–201.Google Scholar
  25. 25.
    Sangwan, P., Kovac, S., Davis, K.E.R., Sait, M., and Janssen, P.H., Detection and cultivation of soil Verrucomicrobia, Appl. Environ. Microbiol., 2005, vol. 71, pp. 8402‒8410.CrossRefGoogle Scholar
  26. 26.
    Semenov, M.V., Chernov, T.I., Tkhakakhova, A.K., Zhelezova, A.D., Ivanova, E.A., Kolganova, T.V., and Kutovaya, O.V., Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century, Appl. Soil Ecol., 2018. (in press) doi 10.1016/j.apsoil.2018.03.002Google Scholar
  27. 27.
    Shen, W.-S., Yin, R., Lin, X.-G., and Cao, Z.-H., Bacterial communities in a buried ancient paddy soil from the Neolithic Age, Pedosphere, 2010, vol. 20, pp. 389–398.CrossRefGoogle Scholar
  28. 28.
    Sokolov, I.A., Teoreticheskie problemy geneticheskogo pochvovedeniya (Theoretical Issues in Geetic Soil Science), 2nd ed., Novosibirsk: Gumanitar. Tekhnol., 2004.Google Scholar
  29. 29.
    Temraleeva, A.D., Moskalenko, S.V., El’tsov, M.V., Vagapov, I.M., Ovchinnikov, A.Y., Gugalinskaya, L.A., Alifanov, V.M., and Pinskii, D.L., Stability and morphological and molecular-genetic identification of algae in buried soils, Euras. Soil Sci., 2017, vol. 50, pp. 952‒960.CrossRefGoogle Scholar
  30. 30.
    USS Working Group WRB, World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, 2014.Google Scholar
  31. 31.
    Walters, W.A., Knight, R., and Fierer, N., The under-recognized dominance of Verrucomicrobia in soil bacterial communities, Soil Biol. Biochem., 2011, vol. 43, pp. 1450–1455.CrossRefGoogle Scholar
  32. 32.
    Zhou, J., Xia, B., Treves, D.S., Wu, L.-Y., Marsh, T.L., O’Neill, R.V., Palumbo, A.V., and Tiedje, J.M., Spatial and resource factors influencing high microbial diversity in soil, Appl. Environ. Microbiol., 2002, vol. 68, pp. 326–334.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. I. Chernov
    • 1
  • A. D. Zhelezova
    • 1
  • O. V. Kutovaya
    • 1
  • A. O. Makeev
    • 2
  • A. K. Tkhakakhova
    • 1
  • N. A. Bgazhba
    • 1
  • F. G. Kurbanova
    • 1
  • A. V. Rusakov
    • 3
  • T. A. Puzanova
    • 2
  • O. S. Khokhlova
    • 4
  1. 1.Dokuchaev Soil Science InstituteMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.St.-Petersburg State UniversitySt.-PetersburgRussia
  4. 4.Institute of Physiscochemical and Biological Problems of Soil Science, Russian Academy of SciencesPushchinoRussia

Personalised recommendations