, Volume 87, Issue 6, pp 766–776 | Cite as

Description of “Candidatus Jettenia ecosi” sp. nov., a New Species of Anammox Bacteria

  • E. A. BotchkovaEmail author
  • Yu. V. Litti
  • A. A. Novikov
  • D. S. Grouzdev
  • E. S. Bochkareva
  • A. V. Beskorovayny
  • B. B. Kuznetsov
  • A. N. Nozhevnikova


A new species of anammox bacteria, “Candidatus Jettenia ecosi,” was identified in the microbial community of a lab-scale vertical anaerobic upflow bioreactor fed with mineral medium and the biomass immobilized on a brush-shaped carrier. The reactor was inoculated with activated sludge from a denitrifying bioreactor of a municipal wastewater treatment station in the valley of the Mzymta River (Krasnodar krai, Russia). At constant increase of concentrations of the substrates for the anammox process (\({\text{NH}}_{4}^{ + }\) and \({\text{NO}}_{2}^{ - }\)) in the course of five years, a microbial community containing a new species of anammox bacteria “Candidatus Jettenia ecosi” developed in the bioreactor. Stable activity in a wide range of substrate concentrations (0.02 to 5.6 g N/L), рН (7.2 to 8.8), and under microaerophilic conditions (3% oxygen in the gas phase) were the remarkable features of the new species. Optimal growth temperature was 30°C. Doubling time of physiologically active anammox bacteria was 13 days. Cells of the new bacteria (~1 µm in diameter) exhibited the typical anammox morphology and ultrastructure. The cells had a tendency for attached growth and formation of biofilms. Hopanoids and ladderane lipids, which are among the key markers of this microorganisms, were found in the membranes of the new anammox bacteria. According to the results of the 16S rRNA gene sequencing, the new bacteria belong to the candidate genus “Candidatus Jettenia,” phylum Planctomycetes with the proposed name “Candidatus Jettenia ecosi” sp. nov.


anammox bacteria anaerobic ammonium oxidation new species description Candidatus Jettenia ecosi” sp. nov. ladderane lipids wastewater treatment 



The work was supported by the State Assignment for basic research no. 0104-2014-0110. Investigation of the lipid composition of the membranes of anammox bacteria, which required special equipment, was supported by the State Assignment no 16.1812.2014/K.


  1. 1.
    Ali, M., Oshiki, M., Awata, T., Isobe, K., Kimura, Z., Yoshikawa, H., Hira, D., Kindaichi, T., Satoh, H., Fujii, T., and Okabe, S., Physiological characterization of anaerobic ammonium oxidizing bacterium ‘Candidatus Jettenia caeni,’ Environ. Microbiol., 2015, vol. 17, pp. 2172‒2189.CrossRefGoogle Scholar
  2. 2.
    Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A., Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol., 1990, vol. 56, pp. 1919‒1925.Google Scholar
  3. 3.
    Birnboim, H.C. and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res., 1979, vol. 7, pp. 1513‒1523.CrossRefGoogle Scholar
  4. 4.
    Botchkova, E.A., Litti, Y.V., Kuznetsov, B.B., and Nozhevnikova, A.N., Microbial biofilms formed in a laboratory-scale anammox bioreactor with flexible brush carrier, J. Biomater. Nanobiotechnol., 2014, vol. 5, pp. 76‒82.CrossRefGoogle Scholar
  5. 5.
    Carlson, C.A. and Ingraham, J.L., Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans, Appl. Environ. Microbiol., 1983, vol. 45, pp. 1247‒1253.Google Scholar
  6. 6.
    Dapena-Mora, A., Fernandez, I., Campos, J.L., Mosquera-Corral, A., Mendez, R., and Jetten, M.S.M., Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production, Enzyme Microb. Technol., 2007, vol. 40, pp. 859‒865.CrossRefGoogle Scholar
  7. 7.
    Euzéby, J.P., List of bacterial names with standing in nomenclature: a folder available on the Internet, Int. J. Syst. Evol. Microbiol., 1997, vol. 47, pp. 590‒592.CrossRefGoogle Scholar
  8. 8.
    Hopmans, E.C., Kienhuis, M.V.M., Rattray, J.E., Jaeschke, A., Schouten, S., and Sinninghe Damste, J.S., Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry, Rapid Commun. Mass Spectrom., 2006, vol. 20, pp. 2099–2103.CrossRefGoogle Scholar
  9. 9.
    Hu, B.L., Rush, D., van der Biezen, E., Zheng, P., van Mullekom, M., Schouten, S., Damsté, J.S.S., Smol-ders, A.J.P., Jetten, M.S.M., and Kartal, B., New anaerobic, ammonium-oxidizing community enriched from peat soil, Appl. Environ. Microbiol., 2011, vol. 77, pp. 966‒971.CrossRefGoogle Scholar
  10. 10.
    Ishii, S., Ashida, N., Otsuka, S., and Senoo, K., Isolation of oligotrophic denitrifiers carrying previously uncharacterized functional gene sequences, Appl. Environ. Microbiol., 2011, vol. 77, pp. 338‒342.CrossRefGoogle Scholar
  11. 11.
    Jaeschke, A., den Camp, H.J.O., Harhangi, H., Klimiuk, A., Hopmans, E.C., Jetten, M.S., Schouten, S., and Damsté, J.S.S., 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs, FEMS Microbiol. Ecol., 2009, vol. 67, pp. 343‒350.CrossRefGoogle Scholar
  12. 12.
    Kallistova, A.Y., Nikolaev, Y.A., Pimenov, N.V., Dorofeev, A.G., Kozlov, M.N., and Kevbrina, M.V., Role of anammox bacteria in removal of nitrogen compounds from wastewater, Microbiology (Moscow), 2016, vol. 85, pp. 140‒156.CrossRefGoogle Scholar
  13. 13.
    Kampschreur, M.J., Kleerebezem, R., de Vet, W.W., and van Loosdrecht, M.C., Reduced iron induced nitric oxide and nitrous oxide emission, Water Res., 2011, vol. 45, pp. 5945‒5952.CrossRefGoogle Scholar
  14. 14.
    Kellenberger, E., Ryther, A., and Sechard, J., Electron microscope study of DNA containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states, J. Biophys. Biochem. Cytol., 1958, vol. 4, pp. 671‒676.CrossRefGoogle Scholar
  15. 15.
    Kozlov, M.N., Kevbrina, M.V., Dorofeev, A.G., Kazako-va, E.A., Grachev, V.A., Polyakov, D.Y., Aseeva, V.G., and Nikolaev, Y.A., Lipid composition of activated sludge in a pilot plant for anaerobic ammonium oxidation, Appl. Biochem. Microbiol., 2013, vol. 49, pp. 485‒494.CrossRefGoogle Scholar
  16. 16.
    Krsek, M. and Wellington, E.M.H., Comparison of different methods for the isolation and purification of total community DNA from soil, J. Microbiol. Methods, 1999, vol. 39, pp. 1‒16.CrossRefGoogle Scholar
  17. 17.
    Li, X., Sun, S., Badgley, B.D., Sung, S., Zhang, H., and He, Z., Nitrogen removal by granular nitritation–anammox in an upflow membrane-aerated biofilm reactor, Water Res., 2016, vol. 94, pp. 23‒31.CrossRefGoogle Scholar
  18. 18.
    Long, A., Heitman, J., Tobias, C., Philips, R., and Song, B., Co-occurring anammox, denitrification, and codenitrification in agricultural soils, Appl. Environ. Microbiol., 2013, vol. 79, pp. 168‒176.CrossRefGoogle Scholar
  19. 19.
    Lotti, T., Kleerebezem, R., Hu, Z., Kartal, B., De Kreuk, M.K., van Erp Taalman Kip, C., and Van Loosdrecht, M.C.M., Pilot-scale evaluation of anammox-based mainstream nitrogen removal from municipal wastewater, Environ. Tech., 2015, vol. 36, pp. 1167‒1177.CrossRefGoogle Scholar
  20. 20.
    Lotti, T., Kleerebezem, R., Lubello, C., and van Loosdrecht, M.C.M., Physiological and kinetic characterization of a suspended cell anammox culture, Water Res., 2014, vol. 60, pp. 1‒14. doi 10.1016/j.watres.2014.04.017CrossRefGoogle Scholar
  21. 21.
    Lotti, T., van der Star, W.R.L., Kleerebezem, R., Lubello, C., and van Loosdrecht, M.C.M., The effect of nitrite inhibition on the anammox process, Water Res., 2012, vol. 46, pp. 2559‒2569.CrossRefGoogle Scholar
  22. 22.
    Murray, R.G.E. and Stackebrandt, E., Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes, Int. J. Syst. Bacteriol., 1995, vol. 45, pp. 186–187.CrossRefGoogle Scholar
  23. 23.
    Nikolaev, Y.A., Kozlov, M.N., Kevbrina, M.V., Dorofeev, A.G., Pimenov, N.V., Kallistova, A.Y., Grachev, V.A., Kazakova, E.A., Zharkov, A.V., Kuznetsov, B.B., Patutina, E.O., and Bumazhkin, B.K., Candidatus “Jettenia moscovienalis” sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation, Microbiology (Moscow), 2015, vol. 84, pp. 256‒262.CrossRefGoogle Scholar
  24. 24.
    Nozhevnikova, A.N., Litti, Y.V., Nekrasova, V.K., Kulichevskaya, I.S., Grigoryeva, N.V., Kulikov, N.I., and Zubov, M.G., Anaerobic ammonium oxidation (Anammox) in immobilized activated sludge biofilms during the treatment of weak wastewater, Microbiology (Moscow), 2012, vol. 81, pp. 25‒34.CrossRefGoogle Scholar
  25. 25.
    Okabe, S., Oshiki, M., Takahashi, Y., and Satoh, H., N2O emission from a partial nitrification–anammox process and identification of a key biological process of N2O emission from anammox granules, Water Res., 2011, vol. 45, pp. 6461‒6470.CrossRefGoogle Scholar
  26. 26.
    Quan, Z.X., Rhee, S.K., Zuo, J.E., Yang, Y., Bae, J.W., Park, J.R., Lee, S.-T., and Park, Y.H., Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor, Environ. Microbiol., 2008, vol. 10, pp. 3130‒3139.CrossRefGoogle Scholar
  27. 27.
    Ren, Y., Li, D., Li, X., Yang, L., Ding, A., and Zhang, J., High-rate nitrogen removal and microbial community of an up-flow anammox reactor with ceramics as biomass carrier, Chemosphere, 2014, vol. 113, pp. 125‒131.CrossRefGoogle Scholar
  28. 28.
    Reynolds, E.S., The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell. Biol., 1963, vol. 17, pp. 208–213.CrossRefGoogle Scholar
  29. 29.
    Sanger, F., Nicklen, S., and Coulson A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, pp. 5463‒5467.CrossRefGoogle Scholar
  30. 30.
    Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J.W., Schleifer, K.H., and Wagner, M., Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation, Syst. Appl. Microbiol., 2000, vol. 23, pp. 93–106.CrossRefGoogle Scholar
  31. 31.
    Schmid, M., Walsh, K., Webb, R., Rijpstra, W.I., van de Pas-Schoonen, K., Verbruggen, M.J., Hill, T., Moffett, B., Fuerst, J., Schouten, S., Damsté, J.S., Harris, J., Shaw, P., Jetten, M., and Strous, M., Candidatus “Scalindua brodae,” sp. nov., Candidatus “Scalindua wagneri,” sp. nov., two new species of anaerobic ammonium-oxidizing bacteria, Syst. Appl. Microbiol., 2003, vol. 26, pp. 529‒538.CrossRefGoogle Scholar
  32. 32.
    Schmidt, I., van Spanning, R.J., and Jetten, M.S., Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK-and NorB-deficient mutants, Microbiology (UK), 2004, vol. 150, pp. 4107‒4114.CrossRefGoogle Scholar
  33. 33.
    Sinninghe Damsté, J.S., Rijpstra, W.I.C., Geenevasen, J.A., Strous, M., and Jetten, M.S., Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox), FEBS J., 2005, vol. 272, pp. 4270‒4283.CrossRefGoogle Scholar
  34. 34.
    Sinninghe Damsté, J.S., Rijpstra, W.I.C., Schouten, S., Fuerst, J.A., Jetten, M.S., and Strous, M., The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record, Org. Geochim., 2004, vol. 35, pp. 561‒566.CrossRefGoogle Scholar
  35. 35.
    Sneath, P.H.A., International Code of Nomenclature of Bacteria. 1990 Revision, Washington: ASM, 1990.Google Scholar
  36. 36.
    Sonthiphand, P., Hall, M.W., and Neufeld, J.D., Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria, Front. Microbiol., 2014, vol. 5, p. 399.CrossRefGoogle Scholar
  37. 37.
    Strous, M., Heijnen, J.J., Kuenen, J.G., and Jetten, M.S.M., The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Appl. Microbiol. Biotechnol., 1998, vol. 50, pp. 589–596.CrossRefGoogle Scholar
  38. 38.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.CrossRefGoogle Scholar
  39. 39.
    van Kessel, M.A., Stultiens, K., Slegers, M.F., Cruz, S.G., Jetten, M.S., Kartal, B., and den Camp, H.J.O., Current perspectives on the application of N-damo and anammox in wastewater treatment, Curr. Opin. Biotechnol., 2018, vol. 50, pp. 222‒227.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Botchkova
    • 1
    • 2
    Email author
  • Yu. V. Litti
    • 1
  • A. A. Novikov
    • 2
  • D. S. Grouzdev
    • 1
  • E. S. Bochkareva
    • 3
  • A. V. Beskorovayny
    • 2
  • B. B. Kuznetsov
    • 1
  • A. N. Nozhevnikova
    • 1
  1. 1.Research Center of Biotechnology of the Russian Academy of SciencesMoscow, 119071 Russia
  2. 2.Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia
  3. 3.Biological Faculty, Moscow State UniversityMoscowRussia

Personalised recommendations