, Volume 87, Issue 6, pp 806–816 | Cite as

Spectrum of Biological Activity of the Alternaria Fungi Isolated from the Phyllosphere of Herbaceous Plants

  • A. O. BerestetskiyEmail author
  • F. B. Gannibal
  • E. V. Minkovich
  • I. A. Osterman
  • D. R. Salimova
  • P. V. Sergiev
  • S. V. Sokornova


Antimicrobial, phytotoxic, and insecticidal activity of 20 isolates of 16 Alternaria species isolated from above-ground organs of weeds and wild herbaceous plants was determined. Assessment of the antibacterial activity by the agar blocks and paper disks methods revealed antibacterial activity against Bacillus subtilis and/or Pseudomonassyringae in over 70% of the isolates. Antifungal activity against Candida tropicalis was found in 30% of the isolates. The reporter system used in the work revealed no effect of the studied extracts on the ribosomes, although some of them inhibited topoisomerase. Extracts from the culture liquid of all Alternaria spp. isolates were toxic to isolated leaves of Arabidopsis thaliana and Elytrigia repens. Insecticidal activity of the extracts against vetch aphid (Megoura viciae) larvae was revealed in 40% of the isolates. Thus, fungi from the phyllosphere of weeds and wild herbaceous plants may exhibit a broad range of biological activity. This feature may probably be of practical importance for toxicological assessment of those weed pathogens that are evaluated as potential bioherbicides. Our results show that Alternaria fungi may play a significant regulatory role in formation of the communities of phyllosphere organisms and are promising producers of antimicrobial compounds with potentially new mechanisms of action.


micromycetes Alternaria spectrum of the biological activity extracts metabolites antibiotics 



This work was supported by the Russian Science Foundation, projects nos. 14-27-00067 (isolation and identification of fungi) and 18-44-04005 (the study of mechanism of antimicrobial activity of extracts) and by the Russian Academy of Sciences, project no. 0665-2014-0008 (determination of biological activity of the extracts).


  1. 1.
    Aly, A.H., Edrada-Ebel, R., Indriani, I.D., Wray, V., Müller, W.E.G., Totzke, F., Zirrgiebel, U., Schächtele, C., Kubbutat, M.H., Lin, W.H., Proksch, P., and Ebel, R., Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense, J. Nat. Prod., 2008, vol. 71, pp. 972–980.CrossRefGoogle Scholar
  2. 2.
    Andersen, B. and Thrane, U., Differentiation of Altemaria infectoria and Alternaria alternata based on morphology, metabolite profiles, and cultural characteristics, Can. J. Microbiol., 1996, vol. 42, pp. 685–689.CrossRefGoogle Scholar
  3. 3.
    Andersen, B., Dongo, A., and Pryor, B.M., Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila, Mycol. Res., 2008, vol. 112, pp. 241–250.CrossRefGoogle Scholar
  4. 4.
    Andersen, B., Sørensen, J.L., Nielsen, K.F., Gerrits van den Ende, B., and de Hoog, S., A polyphasic approach to the taxonomy of the Alternaria infectoria species-group, Fungal Genet. Biol., 2009, vol. 46, pp. 642–656.CrossRefGoogle Scholar
  5. 5.
    Arivudainambi, U.S.E., Kanugula, A.K., Kotamraju, S., Karunakaran, C., and Rajendran, A., Antibacterial effect of an extract of the endophytic fungus Alternaria alternata and its cytotoxic activity on MCF-7 and MDA MB-231 tumour cell lines, Biol. Lett., 2014, vol. 51, pp. 7–17.CrossRefGoogle Scholar
  6. 6.
    Bashyal, B.P., Wellensiek, B.P., Ramakrishnan, R., Faeth, S.H., Ahmad, N., and Gunatilaka, A.A.L., Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi, Bioorg. Med. Chem., 2014, vol. 22, pp. 6112–6116.CrossRefGoogle Scholar
  7. 7.
    Berestetskiy, A.O. and Kurlenya, A.S., Antimicrobial properties of some phytopathogenic micromycetes, Mikol. Fitopatol., 2014, vol. 48, no. 2, pp. 123–134.Google Scholar
  8. 8.
    Berestetskiy, A.O., Apollonova, L.S., Sokornova, S.V., and Chermenskaya, T.D., Insecticidal properties of phytopathogenic ascomycetes, Vestn. Zashch. Rast., 2015, vol. 85, no. 3, pp. 52–54.Google Scholar
  9. 9.
    Berestetskiy, A.O., Panteleeva, A.S., Gannibal, F.B., Gomzhina, M.M., Gasich, E.L., and Sokornova, S.V., Physiological, biochemical properties and biological activity of Phoma-like fungi isolated from the phyllosphere of weeds and wild herbaceous plants, Mikol. Fitopatol., 2017, vol. 51, no. 5, pp. 283–291.Google Scholar
  10. 10.
    Berestetskii, A.O., Yuzikhin, O.S., Katkova, A.S., Dobrodumov, A.V., Sivogrivov, D.E., and Kolombet, L.V., Isolation, identification, and characteristics of the phytotoxin produced by the fungus Alternaria cirsinoxia, Appl. Biochem. Microbiol., 2010, vol. 46, no. 1, pp. 75–79.CrossRefGoogle Scholar
  11. 11.
    Berestetskiy, A.O., Gasich, E.L., Poluektova, E.V., Nikolaeva, E.V., Sokornova, S.V., and Khlopunova, L.B., Biological activity of fungi from the phyllosphere of weeds and wild herbaceous plants, Microbiology (Moscow), 2014, vol. 83, no. 5, pp. 523–530.CrossRefGoogle Scholar
  12. 12.
    Buchwaldt, L. and Green, H., Phytotoxicity of destruxin B and its possible role in the pathogenesis of Alternaria brassicae, Plant Pathol., 1992, vol. 41, pp. 55–63.CrossRefGoogle Scholar
  13. 13.
    Cai, S., King, J.B., Du, L., Powell, D.R., and Cichewicz, R.H., Bioactive sulfur-containing sulochrin dimers and other metabolites from an Alternaria sp. isolate from a Hawaiian soil sample, J. Nat. Prod., 2014, vol. 77, pp. 2280–2287.CrossRefGoogle Scholar
  14. 14.
    Chen, S. and Qiang, S., Recent advances in tenuazonic acid as a potential herbicide, Pestic. Biochem. Physiol., 2017, vol. 143, pp. 252–257.CrossRefGoogle Scholar
  15. 15.
    Cimmino, A., Masi, M., Minkovich, E., Evidente, M., Gannibal, P., Krivorotov, D., Chisty, L., Berestetskiy, A., and Evidente, A., Saponaroxins A–C, a new 19-oxa-tricyclohenicosatetraenone and, a new dioxacyclopropacycloundecene-10-carboaldehyde and its 6,7-dihydro derivative, produced by Alternaria saponariae, a pathogen of a medicinal plant Saponaria officinalis, Tetrahedron Lett., 2016b, vol. 57, pp. 1702–1705.CrossRefGoogle Scholar
  16. 16.
    Cimmino, A., Pescitelli, G., Berestetskiy, A., Dalinova, A., Krivorotov, D., Tuzi, A., and Evidente, A., Biological evaluation and determination of the absolute configuration of chloromonilicin, a strong antimicrobial metabolite isolated from Alternaria sonchi, J. Antibiot., 2016a, vol. 69, pp. 9–14.CrossRefGoogle Scholar
  17. 17.
    Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Basic Antibiotic Science), Moscow: MGU Nauka, 2004.Google Scholar
  18. 18.
    Fehr, M., Pahlke, G., Fritz, J., Christensen, M.O., Boege, F., Altemöller, M., Podlech, J., and Marko, D., Alternariol acts as a topoisomerase poison, preferentially affecting the II alpha isoform, Mol. Nutr. Food Res., 2009, vol. 53, pp. 441–451.CrossRefGoogle Scholar
  19. 19.
    Fernandes, M.R.V., Costa e Silva, T.A., Pfenning, L.H., da Costa-Neto, C.M., Heinrich, T.A., de Alencar, S.M., de Lima, M.A., and Ikegaki, M., Biological activities of the fermentation extract of the endophytic fungus Alternaria alternate isolated from Coffea arabica L., Braz. J. Pharm. Sci., 2009, vol. 45, pp. 677–685.CrossRefGoogle Scholar
  20. 20.
    Gannibal, F.B., Monitoring al’ternariozov sel’skokhozyaistvennykh kul’tur i identifikatsiya gribov roda Alternaria (Monitoring of Alternarioses of Agricultural Plants and Identification of Alternaria Fungi), S.-Pb.: GNU VIZR, 2011.Google Scholar
  21. 21.
    Gannibal, F.B., New species and new finds of Alternaria sect. Gypsophilae fungi in Russia, Mikol. Fitopatol., 2018, vol. 52, in press.Google Scholar
  22. 22.
    Haraguchi, H., Abo, T., Hashimoto, K., and Yagi, A., Action-mode of antimicrobial altersolanol A in Pseudomonas aeruginosa, Biosci. Biotechnol. Biochem., 1992, vol. 56, pp. 1221–1224.CrossRefGoogle Scholar
  23. 23.
    Hellwig, V., Grothe, T., Mayer-Bartschmid, A., Endermann, R., Geschke, F.U., Henkel, T., and Stadler, M., Altersetin, a new antibiotic from cultures of endophytic Alternaria spp. Taxonomy, fermentation, isolation, structure elucidation and biological activities, J. Antibiot., 2002, vol. 55, pp. 881–892.CrossRefGoogle Scholar
  24. 24.
    Johann, S., Rosa, L.H., Rosa, C.A., Perez, P., Cisalpino, P.S., and Zani, C. L., Antifungal activity of altenusin isolated from the endophytic fungus Alternaria sp. against the pathogenic fungus Paracoccidioides brasiliensis, Rev. Iberoam. Micol., 2012, vol. 29, pp. 205–209.CrossRefGoogle Scholar
  25. 25.
    Kapoor, G., Saigal, S., and Elongavan, A., Action and resistance mechanisms of antibiotics: a guide for clinicians, J. Anaesthesiol. Clin. Pharmacol., 2017, vol. 33, pp. 300–305.CrossRefGoogle Scholar
  26. 26.
    Kaur, H. P., Singh, B., Thakur, A., Kaur, A., Kaur, S., Studies on immunomodulatory effect of endophytic fungus Alternaria alternate on Spodoptera litura, J. Asia-Pacific Entomol., 2015, vol. 18, pp. 67–75.CrossRefGoogle Scholar
  27. 27.
    Lax, A.R., Shepherd, H.S., and Edwards, J.V., Tentoxin, a chlorosis-inducing toxin from Alternaria as a potential herbicide, Weed Technol., 1988, vol. 2, pp. 540–544.CrossRefGoogle Scholar
  28. 28.
    Lee, H.B., Patriarca, A., and Magan N., Alternaria in food: ecophysiology, mycotoxin production and toxicology, Mycobiology (UK), 2015, vol. 43, pp. 93–106.CrossRefGoogle Scholar
  29. 29.
    Lou, J., Fu, L., Peng, Y., and Zhou, L., Metabolites from Alternaria fungi and their bioactivities, Molecules, 2013, vol. 18, pp. 5891–5935.CrossRefGoogle Scholar
  30. 30.
    Meena, M., Gupta, S.K., Swapnil, P., Zehra, A., Dubey, M.K., and Upadhyay, R.S., Alternaria toxins: potential virulence factors and genes related to pathogenesis, Front. Microbiol., 2017, vol. 8, pp. 1451. doi 10.3389/fmicb.2017.01451CrossRefGoogle Scholar
  31. 31.
    Meena, M., Swapnil, P., and Upadhyay, R.S., Isolation, characterization and toxicological potential of Alternaria-mycotoxins (TeA, AOH and AME) in different Alternaria species from various regions of India, Sci. Rep., 2017, vol. 7, pp. 8777. doi: doi 10.1038/s41598-017-09138-9CrossRefGoogle Scholar
  32. 32.
    Mitina, G.V., Yuzikhin, O.S., Isangalin, F.Sh., and Yakimov, A.P., Isolation of the toxin with insecticidal activity from the fungus Lecanicillium muscarium and investigation of its chemical properties, Nauch. Priborostr., 2012, vol. 22, no. 2, pp. 3–10.Google Scholar
  33. 33.
    Okamura, N., Haraguchi, H., Hashimoto, K., and Yagi, A., Altersolanol-related antimicrobial compounds from a strain of Alternaria solani, Phytochemistry, 1993, vol. 34, pp. 1005–1009.CrossRefGoogle Scholar
  34. 34.
    Osterman, I.A., Komarova, E.S., Shiryaev, D.I., Korniltsev, I.A., Khven, I.M., Lukyanov, D.A., Tashlitsky, V.N., Serebryakova, M.V., Efremenkova, O.V., Ivanenkov, Y.A., Bogdanov, A.A., Sergiev, P.V., and Dontsova, O.A., Sorting out antibiotics’ mechanisms of action: a double fluorescent protein reporter for high throughput screening of ribosome and DNA biosynthesis inhibitors, Antimicrob. Agents Chemother., 2016, vol. 60, pp. 7481–7489.Google Scholar
  35. 35.
    Ostry, V., Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs, World Mycotoxin J., 2008, vol. 1, pp. 175–188.Google Scholar
  36. 36.
    Phaopongthai, J., Wiyakrutta, S., Meksuriyen, D., Sriubolmas, N., and Suwanborirux, K., Azole-synergistic anti-candidal activity of altenusin, a biphenyl metabolite of the endophytic fungus Alternaria alternata isolated from Terminalia chebula Retz., J. Microbiol., 2013, vol. 51, pp. 821–828.CrossRefGoogle Scholar
  37. 37.
    Phuwapraisirisan, P., Rangsan, J., Siripong, P., and Tippyang, S., New antitumor fungal metabolites from Alternaria porri, Nat. Prod. Res., 2009, vol. 23, pp. 1063–1071.CrossRefGoogle Scholar
  38. 38.
    Pretsch, A., Proksch, P., and Debbab, A., New Anthraquinone Derivatives, US Patent Application no. 20120129927 A1, 2010.Google Scholar
  39. 39.
    Qiang, S., Wang, L., Wei, R., Zhou, B., Chen, S., Zhu, Y., Dong, Y., and An, C., Bioassay of the herbicidal activity of AAC-toxin produced by Alternaria alternata isolated from Ageratina adenophora, Weed Technol., 2010, vol. 24, pp. 197–201.CrossRefGoogle Scholar
  40. 40.
    Sadrati, N., Daoud, H., Zerroug, A., Dahamna, S., and Bouharati, S., Screening of antimicrobial and antioxidant secondary metabolites from endophytic fungi isolated from wheat (Triticum durum), J. Plant Prot. Res., 2013, vol. 53, pp. 128–136.CrossRefGoogle Scholar
  41. 41.
    Samson, R.A., Hoekstra, E.S., Frisvad, J.C., and Filtenborg, O., Introduction to Food- and Airborne Fungi, 6th ed., Utrecht: CBS, 2000.Google Scholar
  42. 42.
    Sharma, I. and Sharma, A., Use of Alternaria spp. as a pest control agent: a review, World App. Sci. J., 2014, vol. 31, pp. 1869–1872.Google Scholar
  43. 43.
    Siciliano, I., Ortu, G., Gilardi, G., Gullino, M.L., and Garibaldi, A., Mycotoxin production in liquid culture and on plants infected with Alternaria spp. isolated from rocket and cabbage, Toxins, 2015, vol. 7, pp. 743–754.CrossRefGoogle Scholar
  44. 44.
    Singh, B., Thakur, A., Kaur, S., Chadha, B.S., and Kaur, A., Acetylcholinesterase inhibitory potential and insecticidal activity of an endophytic Alternaria sp. from Ricinus communis, Appl. Biochem. Biotechnol., 2012, vol. 168, pp. 991–1002.CrossRefGoogle Scholar
  45. 45.
    Soltani, J. and Moghaddam, M.S.H., Antiproliferative, antifungal, and antibacterial activities of endophytic Alternaria species from Cupressaceae, Curr. Microbiol., 2014, vol. 69, pp. 349–356.CrossRefGoogle Scholar
  46. 46.
    Sowjanya Sree, K., Padmaja, V., and Murthy, Y.L., Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages, Pest Manag. Sci., 2008, vol. 64, pp. 119–125.CrossRefGoogle Scholar
  47. 47.
    Teiten, M.-H., Mack, F., Debbab, A., Aly, A.H., Dicato, M., Proksch, P., and Diederich, M., Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and anti-invasive potential via the inhibition of NF-jB activity, Bioorganic Med. Chem., 2013, vol. 21, pp. 3850–3858.CrossRefGoogle Scholar
  48. 48.
    Titova, Yu.A., Shenin, Yu.D., Pavlyushin, V.A., and Krasnobaeva, I.L., Secondary exometabolites of the strain Brachycladium papaveris 1.39 and its reisolates, Mikol. Fitopatol., 2013, vol. 47, no. 4, pp. 266–273.Google Scholar
  49. 49.
    Vaz, A.B.M., Mota, R.C., Bomfim, M.R.Q., Vieira, M.L.A., Zani, C.L., Rosa, C.A., and Rosa, L.H., Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil, Can. J. Microbiol., 2009, vol. 55, pp. 1381–1391.CrossRefGoogle Scholar
  50. 50.
    Wang, J., Cox, D.G., Ding, W., Huang, G., Lin, Y., and Li, C., Three new resveratrol derivatives from the mangrove endophytic fungus Alternaria sp., Mar. Drugs, 2014, vol. 12, pp. 2840–2850.CrossRefGoogle Scholar
  51. 51.
    Wang, Y., Yang, M.H., Wang, X.B., Li, T.X., and Kong, L.Y., Bioactive metabolites from the endophytic fungus Alternaria alternata, Fitoterapia, 2014, vol. 99, pp. 153–158.CrossRefGoogle Scholar
  52. 52.
    Yang, F., Yang, B., Li, B., and Xiao, C., Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid, J. Zhejiang Univ. Sci. B, 2015, vol. 16, pp. 264–274.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. O. Berestetskiy
    • 1
    Email author
  • F. B. Gannibal
    • 1
  • E. V. Minkovich
    • 1
  • I. A. Osterman
    • 2
  • D. R. Salimova
    • 1
  • P. V. Sergiev
    • 2
  • S. V. Sokornova
    • 1
  1. 1.All-Russian Research Institute of Plant ProtectionSt.-PetersburgRussia
  2. 2.Chemical Faculty, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations