, Volume 87, Issue 5, pp 712–715 | Cite as

Chitosan in Biology, Microbiology, Medicine, and Agriculture

  • V. P. VarlamovEmail author
  • I. S. Mysyakina


The mini-review deals with the recent developments in investigation and application of chitosan and its derivatives within a broad range of human activities. A short historical note on discovery of chitin and chitosan is provided. Special attention is paid to chitosan occurrence and structure, as well as to antimicrobial properties of this biopolymer and their dependence upon the physicochemical characteristics of chitosan: its molecular mass and deacetylation degree, and the conditions of derivative formation. The possible mechanisms of chitosan biological activity are briefly considered.


chitin chitosan chitosan derivatives antimicrobial activity 



The 14th International Conference “Current Prospects in Chitin and Chitosan Research” was prepared with support from the Russian Foundation for Basic Research, grant no. 18-04-20055.


  1. 1.
    Aktuganov, G.E., Safina, V.R., Galimzianova, N.F., Kuz’mina, L.Yu., Gilvanova, E.A., Boyko, T.F., and Melent’ev, A.I., Chitosan resistance of bacteria and micromycetes differing in ability to produce extracellular chitinases and chitosanases, Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 716–724.CrossRefGoogle Scholar
  2. 2.
    Blagodatskikh, I.V., Kulikov, S.N., Vyshivannaya, O.V., Bezrodnykh, E.A., and Tikhonov, V.E., N-Reacetylated oligochitosan: pH dependence of self-assembly properties and antibacterial activity, Biomacromolecules, 2017, vol. 18, pp. 1491–1498. doi 10.1021/acs.biomac.7b00039PubMedCrossRefGoogle Scholar
  3. 3.
    Blagodatskikh, I.V., Vyshivannaya, O.V., Alexandro-va, A.V., Bezrodnykh, E.A., Zelenikhin, P.V., Kulikov, S.N., and Tikhonov, V.E., Antibacterial activity and cytotoxicity of betainated oligochitosane derivatives, Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 725–731.CrossRefGoogle Scholar
  4. 4.
    Chang, S.H., Lin, H.T., Wu, G.J., and Tsai, G.J., pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan, Carbohydr. Polym., 2015, vol. 134, pp. 74–81. doi 10.1016/j.carbpol.2015.07.072PubMedCrossRefGoogle Scholar
  5. 5.
    Dragland, I.S., Rukke, H.V., Stenhagen, I.S., Lönn-Stensrud, J., and Kopperud, H.M., Antibacterial and antibiofilm effect of low viscosity chitosan against Staphylococcus epidermidis, Int. J. Microbiol., 2016. Article ID 9159761. doi 10.1155/2016/9159761Google Scholar
  6. 6.
    Dutta, P.K., Tripathi, S., Mehrotra, G.K., and Dutta, J., Perspectives for chitosan based antimicrobial films in food applications, Food Chem., 2009, vol. 114, pp. 1173–1182. doi 10.1016/j.foodchem.2008.11.047CrossRefGoogle Scholar
  7. 7.
    Feofilova, E.P., Fungal chitin: occurrence, biosynthesis, physicochemical properties, and prospects of application in Khitin i khitozan. Poluchenie, svoistva, primenenie (Chitin and Chitosan. Production, Properties, and Application), Skryabin, K.G., Vikhoreve, G.A., and Varlamov, V.P., Eds., Moscow: Nauka, 2002b, pp. 101–111.Google Scholar
  8. 8.
    Feofilova, E.P., Key role of chitin in formation of the fungal cell wall, in Khitin i khitozan. Poluchenie, svoistva, primenenie (Chitin and Chitosan. Production, Properties, and Application), Skryabin, K.G., Vikhoreve, G.A., and Varlamov, V.P., Eds., Moscow: Nauka, 2002a, pp. 79–100.Google Scholar
  9. 9.
    Gegel’, N.O., Zudina, I.V., Malinkina, O.N., and Shipovskaya, A.B., Effect of ascorbic acid isomeric forms on antibacterial activity of its chitosan salts, Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 732–737.CrossRefGoogle Scholar
  10. 10.
    Glinel, K., Thebault, P., Humblot, V., Pradier, C.M., and Jouenne, T., Antibacterial surfaces developed from bio-inspired approaches, Acta Biomater., 2012, vol. 8, pp. 1670–1684. doi 10.1016/j.actbio.2012.01.011PubMedCrossRefGoogle Scholar
  11. 11.
    Goy, R.C., de Britto, D., and Assis, O.B.G., A review of the antimicrobial activity of chitosan, Polímeros, 2009, vol. 19, pp. 241–247. doi 10.1590/S0104-14282009000300013CrossRefGoogle Scholar
  12. 12.
    Il’ina, A.V. and Varlamov, V.P., In vitro antitumor activity of heterochitooligosaccharides (review), Appl. Biochem. Microbiol., 2015, vol. 51, pp. 1–10.CrossRefGoogle Scholar
  13. 13.
    Il’ina, A.V. and Varlamov, V.P., Neutralization of reactive oxygen species by chitosan and its derivatives in vitro/in vivo (review), Appl. Biochem. Microbiol., 2016, vol. 52, pp. 1–14.CrossRefGoogle Scholar
  14. 14.
    Il’ina, A.V., Shagdarova, B.Ts., Lun’kov, A.P., Varla-mov, V.P., and Kulikov, S.N., In vitro antifungal activity of metal complexes of a quaternized chitosan derivative with copper ions, Microbiology (Moscow), 2017, vol. 86, pp. 590–595.CrossRefGoogle Scholar
  15. 15.
    Junter, G.A., Thébault, P., and Lebrun, L., Polysaccharide-based antibiofilm surfaces, Acta Biomater., 2016, vol. 30, pp. 13–25. doi 10.1016/j.actbio.2015.11.010PubMedCrossRefGoogle Scholar
  16. 16.
    Karimi, K. and Zamani, A., Mucor indicus: Biology and industrial application perspectives: a review, Biotechnol. Adv., 2013, vol. 31, pp. 466–481.PubMedCrossRefGoogle Scholar
  17. 17.
    Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Center Bioeng., Russ. Acad. Sci., 2013.Google Scholar
  18. 18.
    Kulikov, S.N. and Khairullin, R.Z., Mechanism of action and role of the chemical structure in antibacterial and antimycotic activity of chitosan, in Khitozan (Chitosan), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Center Bioeng., Russ. Acad. Sci., 2013, pp. 363–407.Google Scholar
  19. 19.
    Kulikov, S.N., Lisovskaya, S.A., Zelenikhin, P.V., Bezrodnykh, E.A., Shakirova, D.R., Blagodatskikh, I.V., and Tikhonov, V.E., Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship, Eur. J. Med. Chem., 2014, vol. 74, pp. 169–178. doi 10.1016/j.ejmech.2013.12.017PubMedCrossRefGoogle Scholar
  20. 20.
    Kumar, M.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., and Domb, A.J., Chitosan chemistry and pharmaceutical perspectives, Chem. Revs., 2004, vol. 104, pp. 6017–6084.CrossRefGoogle Scholar
  21. 21.
    Kuprina, E., Kirillov, A.I., Ishevski, A.L., and Murashev, S.V., Food supplement based on chitin with enhanced lipid-lowering and sorption properties, Progr. Chem. Appl. Chitin Its Deriv., 2015, vol. 20, pp. 156–161.Google Scholar
  22. 22.
    Li, J., Wu, Y., and Zhao, L., Antibacterial activity and mechanism of chitosan with ultra high molecular weight, Carbohydr. Polym., 2016, vol. 148, pp. 200–205. doi 10.1016/j.carbpol.2016.04.025PubMedCrossRefGoogle Scholar
  23. 23.
    Mellegård, H., Strand, S.P., Christensen, B.E., Gra-num, P.E., and Hardy, S.P., Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism, Int. J. Food Microbiol., 2011, vol. 148, pp. 48–54. doi 10.1016/j.ijfoodmicro.2011.04.023PubMedCrossRefGoogle Scholar
  24. 24.
    Muzzarelli, R.A.A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., and Paoletti, M.G., Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial, Carbohydr. Polym., 2012, vol. 87, pp. 995–1012.CrossRefGoogle Scholar
  25. 25.
    Mysyakina, I.S., Bokareva, D.A., Usov, A.I., and Feofilova, E.P., Differences in the carbohydrate composition between the yeastlike and mycelial cells of Mucor hiemalis, Microbiology (Moscow). 2012, vol. 81, pp. 405–408.CrossRefGoogle Scholar
  26. 26.
    Nemtsev, S.V., Kompleksnaya technologiya khitina i khitozana iz pantsyrya rakoobraznykh (Aggregate Technology of Chitin and Chitosan from Crustacean Shells), Moscow: VNIRO, 2006.Google Scholar
  27. 27.
    Nemtsev, S.V., Zueva, O.Yu., Khismatullin, M.R., Albulov, A.I., and Varlamov, V.P., Isolation of chitin and chitosan from honeybees, Appl. Biochem. Microbiol., 2004, vol. 40, pp. 39–43.CrossRefGoogle Scholar
  28. 28.
    Oliveira, W.F., Silva, P.M.S., Silva, R.C.S., Silva, G.M.M., Machado, G., Coelho, L.C.B.B., and Correia, M.T.S., Staphylococcus aureus and Staphylococcus epidermidis infections on implants, J. Hosp. Infect., 2018, vol. 98, pp. 111–117. doi 10.1016/j.jhin.2017.11.008PubMedCrossRefGoogle Scholar
  29. 29.
    Paolicelli, P., de la Fuente, M., Sánchez, A., Seijo, B., and Alonso, M.J., Chitosan nanoparticles for drug delivery to the eye, Expert Opin. Drug Deliv., 2009, vol. 6, pp. 239–253.PubMedCrossRefGoogle Scholar
  30. 30.
    Popova, E.V., Domnina, N.S., Kovalenko, N.M., Borisova, E.A., Kolesnikov, L.E., and Tyuterev, S.L., Biological activity of chitosan with different molecular mass, Vestn. Zashch. Rast., 2017, no. 3 (93), pp. 28–33.Google Scholar
  31. 31.
    Roberts, G.A., Thirty years of progress in chitin and chitosan, Progr. Chem. Appl. Chitin Its Deriv., 2008, vol. 13, pp. 7–15.Google Scholar
  32. 32.
    Rouget, C., Substances amylacées dans les tissus des animaux, spécialement des articulés (chitine). Compt. Rend., 1859, vol. 48, pp. 792–795.Google Scholar
  33. 33.
    Saltykova, E.S., Gaifullina, L.R., Kaskinova, M.D., Gataullin, A.R., Matniyazov, R.T., Poskryakov, A.V., and Nikolenko, A.G., Effect of chitosan on development of Nosema apis microsporidia in honey bees, Microbiology (Moscow), 2018, vol. 87, no. 5, pp. 738–743.CrossRefGoogle Scholar
  34. 34.
    Sankov, V., Shagdarova, B., Varlamov, V., Esipov, R., Sand virshchevskaya, E., Large size DNA in vitro and in vivo delivery using chitosan transfection, Progr. Chem. Appl. Chitin Its Deriv., 2017, vol. 22, pp. 190–200.Google Scholar
  35. 35.
    Shagdarova, B.Ts., Ilyina, A.V., Lopatin, S.A., Kartashov, M.I., Arslanova, L.R., Dzhavakhiya, V.G., and Varlamov, V.P., Study of the protective activity of chitosan hydrolyzate against septoria leaf blotch of wheat and brown spot of tobacco, Appl. Biochem. Microbiol., 2018, vol. 54, pp. 68–73.CrossRefGoogle Scholar
  36. 36.
    Silva, L.P., Britto, D., Seleghim, M.H.R., and Assis, O.B.G., In vitro activity of water-soluble quaternary chitosan chloride salt against E. coli, World J. Microbiol. Biotechnol., 2010, vol. 26, pp. 2089–2092.CrossRefGoogle Scholar
  37. 37.
    Tereshina, V.M., Memorskaya, A.S., Feofilova, E.P., Nemtsev, D.V., and Kozlov, V.M., Isolation of polysaccharide complexes from mycelial fungi and determination of their deacetylation degree, Microbiology (Moscow). 1997, vol. 66, pp. 84–89.Google Scholar
  38. 38.
    Tsigos, I., Zydowicz, N., Martinou, A., Domard, A., and Bouriotis, V., Mode of action of chitin deacetylase from Mucor rouxii on partially N-acetylated chitosans, Eur. J. Biochem., 1999, vol. 261, pp. 698–705.PubMedCrossRefGoogle Scholar
  39. 39.
    Vasilev, K., Cook, J., and Griesser, H.J., Antibacterial surfaces for biomedical devices, Expert Rev. Med. Devices, 2009, vol. 6, pp. 553–567. doi 10.1586/erd.09.36PubMedCrossRefGoogle Scholar
  40. 40.
    Xia, W., Liu, P., Zhang, J., and Chen, J., Biological activities of chitosan and chitooligosaccharides, Food Hydrocolloids, 2011, vol. 25, pp. 170–179.CrossRefGoogle Scholar
  41. 41.
    Younes, I. and Rinaudo, M., Chitin and chitosan preparation from marine sources. Structure, properties and applications, Mur. Drugs, 2015, vol. 13, pp. 1133–1174.CrossRefGoogle Scholar
  42. 42.
    Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., and Nasri, M., Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities, Int. J. Food Microbiol., 2014, vol. 185, pp. 57–63. doi 10.1016/j.ijfoodmicro.2014.04.029PubMedCrossRefGoogle Scholar
  43. 43.
    Zubareva, A., Shagdarova, B., Varlamov, V., Kashirina, E., and Svirshchevskaya, E., Penetration and toxicity of chitosan and its derivatives, Eur. Polymer J., 2017, vol. 93, pp. 743–749.CrossRefGoogle Scholar
  44. 44.
    Zubareva, A.A., Shcherbinina, T.S., Varlamov, V.P., and Svirshchevskaya, E.V., Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles, Nanoscale, 2015, vol. 7, pp. 7942–7962. doi 10.1039/c5nr00327PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of SciencesMoscowRussia
  2. 2.Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscowRussia

Personalised recommendations