Advertisement

Microbiology

, Volume 87, Issue 5, pp 642–651 | Cite as

Exometabolites the Penicillium Fungi Isolated from Various High-Latitude Ecosystems

  • T. V. Antipova
  • V. P. Zhelifonova
  • B. P. Baskunov
  • G. A. Kochkina
  • S. M. Ozerskaya
  • A. G. Kozlovskii
EXPERIMENTAL ARTICLES
  • 50 Downloads

Abstract

Secondary metabolites of 25 Penicillium strains isolated from high-latitude ecosystems (upper layer of Antarctic soils and Arctic permafrost deposits) were analyzed. Out of the studied strains, 80% were found to produce secondary metabolites belonging to benzodiazepine alkaloids (anacin, cyclopenin, and cyclopeptin), quinoline alkaloids (viridicatin and 3-methoxyviridicatin), diketopiperazine alkaloids (aurantiamine, 3,12-dihydroroquefortine, roquefortine and rugulosuvin B), polycyclic indole alkaloids (communesin B and chаetoglobosine A), clavine ergot alkaloids (rugulovasins A and B, festuclavine, fumigaclavines A and B, and cyclopiazonic acid), polyketides (mycophenolic acid and citreoviridin), terpenes (andrastins A and B and phomenone), and N-acetyltriptamine. Most strains of the Penicillium subgenus isolated from anthropogenically impaired upper layers of Antarctic deposits and from subsurface Arctic deposits exhibited more complete spectra of secondary metabolites compared to three strains isolated from permafrost 15 000 to 600 000 years old. This is the first report on andrastins formation by a P. restrictum. Wide occurrence of rugulovasins in P. variabile strains was shown.

Keywords:

mycelial fungi Penicillium secondary metabolites chemotaxonomy Antarctica Arctic 

Notes

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research, project no. 15-29-02629-ofi_m.

REFERENCES

  1. 1.
    Barreto, M.C., Houbraken, J., Samson, R.A., and Frisvad, J.C., Taxonomic studies of the Penicllium glabrum complex and the description of new spesies Penicillium subericola, Fungal Diversity, 2011, vol. 49, pp. 23–33.CrossRefGoogle Scholar
  2. 2.
    Burdock, G.A. and Flamm, W.G., Safety assessment of the mycotoxin cyclopiazonic acid, Int. J. Toxicol., 2000, vol. 19, pp. 195–218.CrossRefGoogle Scholar
  3. 3.
    Cole, R.J. and Schweikert, M.A., Handbook of Secondary Fungal Metabolites. Amsterdam: Acad. Press, 2003, vols. 1–3.Google Scholar
  4. 4.
    Frisvad, J.C., Smedsgaard, J., Larsen, T.O., and Samson, R.A., Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium, Stud. Mycol., 2004, vol. 49, pp. 201–241.Google Scholar
  5. 5.
    Frisvad, J.C. and Larsen, T.O., Chemodiversity in the genus Aspergillus, Appl. Microbiol. Biotechnol., 2015, vol. 99. P. 7859–7877.CrossRefPubMedGoogle Scholar
  6. 6.
    Hong, S.Y., Roze, L.V., and Linz, J.E., Oxidative stress-related transcription factors in the regulation of secondary metabolism, Toxins (Basel). 2013, vol. 5, pp. 683–702.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Houbraken, J., Frisvad, J.C., and Samson, R.A., Taxonomy of Penicillium section Citrina, Stud. Mycol. 2011, vol. 70, pp. 53–138.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Isaka, M., Jaturapat, A., Kladwang, W., Punya, J., Lertwerawat, Y., Tanticharoen, M., and Thebtaranonth, Y., Antiplasmodial compounds from the wood-decayed fungus Xylaria sp. BCC 1067, Planta Med., 2000, vol. 66, pp. 473–475.CrossRefPubMedGoogle Scholar
  9. 9.
    Ivanushkina, N.E., Kochkina, G.A., and Ozerskaya, S.M., Fungi in ancient permafrost sediments of the Arctic and Antarctic regions, in Life in Ancient Ice, Cactello, J. and Rogers, S., Eds, Princeton: Princeton Univ. Press, 2005. Ch. 9, pp. 127–139.Google Scholar
  10. 10.
    Jiang, C., Song, J., Zhang, J., and Yang, Q., New production process of the antifungal chaetoglobosin A using cornstalks, Brazil. J. Microbiol., 2017, vol. 48, pp. 410–418.CrossRefGoogle Scholar
  11. 11.
    Kochkina, G.A., Ozerskaya, S.M., Ivanushkina, N.E., Chigineva, N.I., Vasilenko, O.V., Spirina, E.V., and Gilichinskii, D.A., Fungal diversity in the antarctic active layer, Microbiology (Moscow). 2014, vol. 83, no. 2, pp. 94–101.Google Scholar
  12. 12.
    Kochkina, G.A., Ozerskaya, S.M., Ivanushkina, N.E., Chigineva, N.I., Vasilenko, O.V., Spirina, E.V., and Gilichinskii, D.A., Fungal diversity in the antarctic active layer, Microbiology (Moscow). 2014, vol. 83, no. 2, pp. 94–101.CrossRefGoogle Scholar
  13. 13.
    Kozlovsky, A.G., Zhelifonova, V.P., and Antipova, T.V., Penicillium fungi from permafrost: biosynthesis of secondary metabolites, peculiarities of growth and development, in Permafrost: Distribution, Composition, and Impact on Infrastructure and Ecosystems, Pokrovsky, O.S., Ed., New York: Nova Science, 2014, pp. 265–280.Google Scholar
  14. 14.
    Lowes, N.R., Smith, R.A., and Beck, B.E., Roquefortine in the stomach contents of dogs suspected of strychnine poisoning in Alberta, Can. Vet. J., 1992, vol. 33. P. 535–538.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Mantle, P.G., Secondary metabolites Penicillium and Acremonium, in Biotechnology Handbooks, Atkinson, T. and Sherwood, R.F., Eds., New York: Plenum, 1987, vol. 1, pp. 161–243.Google Scholar
  16. 16.
    Matuschek, M., Wallwey, C., Xie, X., and Li, S.M., New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine, Org. Biomol. Chem., 2011, vol. 9, pp. 4328–4335.CrossRefPubMedGoogle Scholar
  17. 17.
    Miller, J.D. and McMullin, D.R., Fungal secondary metabolites as harmful indoor air contaminants: 10 years on, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 9953–9966.CrossRefPubMedGoogle Scholar
  18. 18.
    Nicoletti, R. and de Stefano, M. Penicillium restrictum as an antogonist of plant pathogenic fungi, Dinam. Biochem. Proc. Biotechnol. Mol. Biol., 2012, vol. 6, no. 2, pp. 61–69.Google Scholar
  19. 19.
    Omura, S., Inokoshi, J., Uchida, R., Shiomi, K., Masuma, R., Kawakubo, T., Tanaka, H., Iwai, Y., Kosemurall, S., and Yamamurall, S., Andrastins A–C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929, J. Antibiotic, 1996, vol. 49, pp. 414–417.CrossRefGoogle Scholar
  20. 20.
    Ozerskaya, S., Kochkina, G., Ivanushkina, N., and Gilichinsky, D., Fungi in permafrost, in Permafrost Soils, Margesin, R., Ed., Berlin: Springer, 2008, pp.85–96.Google Scholar
  21. 21.
    Pitt, J.I., The Genus Penicillium and Its Teleomorphis States Eupenicillium and Talaromyces, London: Academic, 1979.Google Scholar
  22. 22.
    Samson, R.A. and Frisvad, J.C., Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites, Stud. Mycol., 2004, vol. 49, pp. 1–143.Google Scholar
  23. 23.
    Trost, B.M. and Osipov, M., Recent advances on the total syntheses of the communesin alkaloids and perophoramidine, Chemistry, 2015, vol. 21, pp. 16318–16343.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. V. Antipova
    • 1
  • V. P. Zhelifonova
    • 1
  • B. P. Baskunov
    • 1
  • G. A. Kochkina
    • 1
  • S. M. Ozerskaya
    • 1
  • A. G. Kozlovskii
    • 1
  1. 1.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of SciencesPushchinoRussia

Personalised recommendations