Advertisement

Microbiology

, Volume 87, Issue 3, pp 372–381 | Cite as

Phylogenetic Diversity of the Sulfur Cycle Bacteria in the Bottom Sediments of the Chersonesus Bay

  • A. L. BryukhanovEmail author
  • M. A. Vlasova
  • T. V. Malakhova
  • A. A. Perevalova
  • N. V. Pimenov
Experimental Articles
  • 58 Downloads

Abstract

The Black Sea is the largest meromictic basin, in the bottom sediments of which a powerful biogenic process of sulfide production occurs. The goal of the present work was to obtain data on phylogenetic diversity of the sulfur cycle microorganisms (sulfate-reducing and sulfur-oxidizing bacteria) in the Black Sea coastal gas-saturated bottom sediments. The samples were collected in the Chersonesus (Blue) Bay near Sevastopol from whitish bacterial mats of sulfurettes, and from the upper layer of the nearby seabed. Using DNA isolated from the native samples and obtained enrichment cultures, PCR analysis was performed with oligonucleotide primers specific to the fragments of the 16S rRNA genes of the main subgroups of sulfatereducing bacteria (SRB) and to the fragments of the dsrB gene (both reductive and oxidative types), encoding the β-subunit of dissimilatory (bi)sulfite reductase, the key enzyme in the sulfur cycle, inherent in both sulfate- reducing and sulfur-oxidizing microorganisms. The presence of 16S rRNA gene fragments specific to the genera Desulfobacterium, Desulfobacter, Desulfococcus–Desulfonema–Desulfosarcina, and Desulfovibrio–Desulfomicrobium was detected in the DNA samples isolated from coastal bottom bacterial mats. Usage of denaturing gradient gel electrophoresis (DGGE) with subsequent sequencing of reamplified dsrB gene fragments revealed that according to deduced amino acid sequences encoded by the dsrB gene (reductive type), SRB from the coastal gas-saturated bottom sediments of the Black Sea had the highest homology (92−99%) with the dsrB gene of cultured SRB belonging to the genera Desulfovibrio, Desulfatitalea, Desulfobacter, and Desulfobacterium, as well as with uncultured SRB strains from various marine habitats, such as bottom sediments of the Northern and Japanese seas. Deduced amino acid sequences encoded by the oxidative dsrB gene had the highest homology (90−99%) with the relevant sequences of the genera Thiocapsa, Thiobaca, Thioflavicoccus, and Thiorhodococcus.

Keywords

sulfate-reducing bacteria sulfur-oxidizing (thionic) bacteria the Black Sea bottom sediments microbial mats microbial communities dissimilatory (bi)sulfite reductase dsrB gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amouroux, D., Roberts, G., Rapsomanikis, S., and Andreae, M.O., Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from nearshore and shelf waters of the north-western Black Sea, Estuar. Coast. Shelf Sci., 2002, vol. 54, pp. 575–587.Google Scholar
  2. Bagwell, C.E., Formolo, M., Ye, Q., Yeager, C.M., Lyons, T.W., and Zhang, C.L., Direct analysis of sulfatereducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE, J. Basic Microbiol., 2009, vol. 49, pp. 87–92.CrossRefGoogle Scholar
  3. Blazejak, A. and Schippers, A., Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea, Front. Microbiol., 2011, vol. 2, pp. 253–263.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B.B., Witte, U., and Pfannkuche, O., A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 2000, vol. 407, pp. 623–627.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bryukhanov, A.L., Korneeva, V.A., Kanapatskii, T.A., Zakharova, E.E., Men’ko, E.V., Rusanov, I.I., and Pimenov, N.V., Investigation of the sulfate-reducing bacterial community in the aerobic water and chemocline zone of the Black Sea by the FISH technique, Microbiology (Moscow), 2011, vol. 80, pp. 108–116.CrossRefGoogle Scholar
  6. Daly, K., Sharp, R.J., and McCarthy, A.J., Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria, Microbiology (UK), 2000, vol. 146, pp. 1693–1705.CrossRefGoogle Scholar
  7. Dimitrov, L., Contribution to atmospheric methane by natural gas seepages on the Bulgarian continental shelf, Cont. Shelf Res., 2002, vol. 22, pp. 2429–2442.CrossRefGoogle Scholar
  8. Egorov, V.N., Pimenov, N.V., Malakhova, T.V., Kanapatskii, T.A., Artemov, Yu.G., and Malakhova, L.V., Biogeochemical characteristics of methane distribution in the water and bottom sediments at gas seepage sites in the Sevastopol bays, Mor. Ekol. Zh., 2012, vol 11, pp. 41–52.Google Scholar
  9. Geets, J., Borremans, B., Diels, L., Springael, D., Vangronsveld, J., van der Lelie, D., and Vanbroekhoven, K., DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria, J. Microbiol. Methods, 2006, vol. 66, pp. 194–205.CrossRefPubMedGoogle Scholar
  10. Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium, Global Geochem. Cycles, 1994, vol. 8, pp. 451–463.CrossRefGoogle Scholar
  11. Hovland, M., Judd, A.G., and Burke, R.A., Jr., The global flux of methane from shallow submarine sediments, Chemosphere, 1993, vol. 26, pp. 559–578.CrossRefGoogle Scholar
  12. Ivanov, M.V., Pimenov, N.V., Rusanov, I.I., and Lein, A.Y., Microbial processes of the methane cycle at the north-western shelf of the Black Sea, Estuar. Coast. Shelf. Sci., 2002, vol. 54, pp. 589–599.CrossRefGoogle Scholar
  13. Jessen, G.L., Lichtschlag, A., Struck, U., and Boetius, A., Distribution and composition of thiotrophic mats in the hypoxic zone of the Black Sea (150–170 m water depth, Crimea margin), Front. Microbiol., 2016, vol. 7, pp. 1011–1024.PubMedPubMedCentralGoogle Scholar
  14. Jørgensen, B.B., Bang, M., and Blackburn, T.H., Anaerobic mineralization in marine sediments from the Baltic Sea–North Sea transition, Mar. Ecol. Prog. Ser., 1990, vol. 59, pp. 39–54.CrossRefGoogle Scholar
  15. Judd, A.G., Natural seabed gas seeps as sources of atmospheric methane, Environ. Geol., 2004, vol. 46, pp. 988–996.CrossRefGoogle Scholar
  16. Kleindienst, S., Ramette, A., Amann, R., and Knittel, K., Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments, Environ. Microbiol., 2012, vol. 14, pp. 2689–2710.CrossRefPubMedGoogle Scholar
  17. Kumar, S., Stecher, G., and Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Leloup, J., Loy, A., Knab, N.J., Borowski, C., Wagner, M., and Jørgensen, B.B., Diversity and abundance of sulfatereducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea, Environ. Microbiol., 2007, vol. 9, pp. 131–142.CrossRefPubMedGoogle Scholar
  19. Lenk, S., Arnds, J., Zerjatke, K., Musat, N., Amann, R., and Mussmann, M., Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment, Environ. Microbiol., 2011, vol. 13, pp. 758–774.CrossRefPubMedGoogle Scholar
  20. Lever, M.A., Rouxel, O., Alt, J.C., Shimizu, N., Ono, S., Coggon, R.M., Shanks, W.C., Lapham, L., Elvert, M., Prieto-Mollar, X., Hinrichs, K.-U., Inagaki, F., and Teske, A., Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt, Science, 2013, vol. 339, pp. 1305–1308.Google Scholar
  21. Loy, A., Duller, S., Baranyi, C., Mussmann, M., Ott, J., Sharon, I., Béjà, O., Le Paslier, D., Dahl, C., and Wagner, M., Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes, Environ. Microbiol., 2009, vol. 11, pp. 289–299.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lysenko, V. and Shik, N., Modern processes of carbonate formation associated with hydrocarbon degassing in the Laspi Bay (Southern Crimean coast), Prostr. Vremya, 2013, vol. 2, pp. 151–157.Google Scholar
  23. Malakhova, T.V., Kanapatskii, T.A., Egorov, V.N., Malakhova, L.V., Artemov, Yu.G., Evtushenko, D.B., Gulin, S.B., and Pimenov, N.V., Microbial processes and genesis of methane gas jets in the coastal areas of the Crimean Peninsula, Microbiology (Moscow), 2015, vol. 84, pp. 838–845.CrossRefGoogle Scholar
  24. Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., Dymock, D., and Wade, W.G., Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA, Appl. Environ. Microbiol., 1998, vol. 64, pp. 795–799.PubMedPubMedCentralGoogle Scholar
  25. Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg, M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann, R., Jørgensen, B. B., Widdel, F., Peckmann, J., Pimenov, N.V., and Gulin, M.B., Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane, Science, 2002, vol. 297, pp. 1013–1015.CrossRefPubMedGoogle Scholar
  26. Müller, A.L., Kjeldsen, K.U., Rattei, T., Pester, M., and Loy, A., Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases, ISME J., 2015, vol. 9, pp. 1152–1165.CrossRefPubMedGoogle Scholar
  27. Muyzer, G., de Waal, E.C., and Uitterlinden, A.G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ. Microbiol., 1993, vol. 59, pp. 695–700.PubMedPubMedCentralGoogle Scholar
  28. Neretin, L.N., Abed, R.M., Schippers, A., Schubert, C.J., Kohls, K., and Kuypers, M.M., Inorganic carbon fixation by sulfate-reducing bacteria in the Black Sea water column, Environ. Microbiol., 2007, vol. 9, pp. 3019–3024.CrossRefPubMedGoogle Scholar
  29. Pester, M., Bittner, N., Deevong, P., Wagner, M., and Loy, A., A “rare biosphere” microorganism contributes to sulfate reduction in a peatland, ISME J., 2010, vol. 4, pp. 1591–1602.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pimenov, N.V. and Ivanova, A.E., Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea, Microbiology (Moscow), 2005, vol. 74, pp. 362–370.CrossRefGoogle Scholar
  31. Pimenov, N.V., Egorov, V.N., Kanapatskii, T.A., Malakhova, T.V., Artemov, Ju.G., Sigalevich, P.A., and Malakhova, L.V., Sulfate reduction and microbial processes of the methane cycle in the sediments of the Sevastopol Bay, Microbiology (Moscow), 2013, vol. 82, pp. 618–627.CrossRefGoogle Scholar
  32. Schippers, A., Kock, D., Höft, C., Köweker, G., and Siegert, M., Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia, Front. Microbiol., 2012, vol. 3, pp. 16–26.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tkeshelashvili, G.I., Egorov, V.N., Mestvirishvili, Sh.A., Parkhaladze, G.Sh., Gulin, M.B., Gulin, S.B., and Artemov, Yu.G., Methane emissions from the Black Sea bottom in the mouth zone of the Supsa River at the coast of Georgia, Geochem. Int., 1997, vol. 35, pp. 284–288.Google Scholar
  34. Trüper, H.G. and Schlegel, H.G., Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements in growing cells of Cromatium okenii, Antonie van Leeuwenhoek. J. Microbiol. Serol., 1964, vol. 30, pp. 225–238.CrossRefGoogle Scholar
  35. Vetriani, C., Tran, H.V., and Kerkhof, L.J., Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea, Appl. Environ. Microbiol., 2003, vol. 69, pp. 6481–6488.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wrede, C., Heller, C., Reitner, J., and Hoppert, M., Correlative light/electron microscopy for the investigation of microbial mats from Black Sea Cold Seeps, J. Microbiol. Methods, 2008, vol. 73, pp. 85–91.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. L. Bryukhanov
    • 1
    • 2
    Email author
  • M. A. Vlasova
    • 2
  • T. V. Malakhova
    • 3
  • A. A. Perevalova
    • 2
  • N. V. Pimenov
    • 2
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Winogradsky Institute of Microbiology, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Kovalevsky Institute of Marine Biological ResearchRussian Academy of SciencesSevastopolRussia

Personalised recommendations