, Volume 87, Issue 1, pp 33–46 | Cite as

Methylophaga muralis Bur 1, a haloalkaliphilic methylotroph isolated from the Khilganta soda lake (Southern Transbaikalia, Buryat Republic)

  • M. N. ShmarevaEmail author
  • N. V. Doronina
  • S. V. Tarlachkov
  • O. V. Vasilenko
  • Yu. A. Trotsenko
Experimental Articles


A haloalkaliphilic restricted facultative methylotroph, strain Bur 1, which used methanol, methylated amines, and fructose as carbon and energy sources, was isolated from the soda Lake Khilganta (Buryat Republic, Russia). The cells were gram-negative non-spore-forming, motile rods reproducing by binary fission. The organism was aerobic, reduced nitrates to nitrites. Growth occurred at temperatures from 4 to 37°C (optimum at 25–29°C), pH 7.5–10.5 (optimum at 8.5–9.5), and NaCl concentration in the medium from 0.05 to 10.0% NaCl (optimum at 3–4%). Ectoine, glutamate, and sucrose were accumulated as osmoprotectants. Activity of the enzymes of de novo ectoine biosynthesis were detected. The organism utilized C1 compounds via the KDPG variant of the ribulose monophosphate pathway. The DNA G + C content was 44.67 mol %. Based on the similarity of the 16S rRNA gene sequences (94.7–99.1%) and the results of DNA–DNA hybridization (24–74%) with type strains of the neutrophilic and alkaliphilic Methylophaga species, the isolate was identified as Methylophaga muralis Bur 1 (VKM B-3046 = DSM 103617). The genome of M. muralis Bur 1 contained 2585 protein-encoding genes; 634 proteins with unidentified functions were predicted. Three rRNAs (5S, 16S, and 23S) and 38 tRNAs were identified. Apart from the mxaFJGIRSACKLDEH classical cluster of methanol oxidation genes, the xoxF gene was found. Methylamine was oxidized to formaldehyde by methylamine dehydrogenase and via the N-methylglutamate pathway. Orthologs of type III glutamine synthetases were revealed in the genome. The operons of ectoine and sucrose biosynthesis, ectRABC-ask and sps-spp-fruK-ams, were found. The genomes of M. muralis Bur 1 and M. lonarensis MPLT, unlike that of M. nitratireducenticrescens JAM1T, were found to contain the genes encoding the proteins of bicarbonate transport.


Methylophaga muralis Bur 1 haloalkaliphile restricted facultative methylotroph osmoprotectants Metylophaga genomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antony, C.P., Doronina, N.V., Boden, R., Trotsenko, Y.A., Shouche, Y.S., and Murrell J.C., Methylophaga lonarensis sp. nov., a moderately haloalkaliphilic methylotroph isolated from the soda lake sediments of a meteorite impact crater, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1613–1618.CrossRefPubMedGoogle Scholar
  2. Boden, R., Emended description of the genus Methylophaga Janvier et al. 1985, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1644–1646.CrossRefPubMedGoogle Scholar
  3. Boden, R., Ferriera, S., Johnson, J., Kelly, D.P., Murrell, J.C., and Schäfer, H., Draft genome sequence of the chemolithoheterotrophic, halophilic methylotroph Methylophaga thiooxydans DMS010, J. Bacteriol., 2011, vol. 193, pp. 3154–3155.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boden, R., Kelly, D.P., Murrell, J.C., and Schäfer, H., Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle, Environ. Microbiol., 2010, vol. 12, pp. 2688–2699.PubMedGoogle Scholar
  5. But, S.Y., Khmelenina, V.N., Reshetnikov, A.S., Mustakhimov, I.I., Kalyuzhnaya, M.G., and Trotsenko, Y.A., Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z, Arch. Microbiol., 2015, vol. 197, pp. 471–480.CrossRefPubMedGoogle Scholar
  6. De Zwart, J.M.M., Nelisse, P.N., and Kuenen, J.G., Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat, FEMS Microbiol. Ecol., 1996, vol. 20, pp. 261–270.CrossRefGoogle Scholar
  7. Doronina, N.V., Darmaeva, T.D., and Trotsenko, Y.A., Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from the East Mongolian saline soda lake, Int. J. Syst. Evol. Microbiol., 2003a, vol. 53, pp. 223–229.CrossRefPubMedGoogle Scholar
  8. Doronina, N.V., Darmaeva, Ts.D., and Trotsenko, Y.A., Methylophaga natronica sp. nov., a new alkaliphilic and moderately halophilic, restricted-facultative methylotrophic bacterium from soda lake of the Southern Transbaikal region, Syst. Appl. Microbiol., 2003b, vol. 26, pp. 382–389.CrossRefPubMedGoogle Scholar
  9. Doronina, N.V., Gogleva, A.A., and Trotsenko, Y.A., Methylophilus glucosoxydans sp. nov., a restricted facultative methylotroph from rice rhizosphere, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 196–201.CrossRefPubMedGoogle Scholar
  10. Doronina, N.V., Lee, T.D., Ivanova, E.G., and Trotsenko, Y.A., Methylophaga murata sp. nov.: a haloalkaliphilic aerobic methylotroph from deteriorating marble, Microbiology (Moscow), 2005, vol. 74, no. 4, pp. 440–447.CrossRefGoogle Scholar
  11. Doronina, N.V., Li, T.D., Ivanova, E.G., and Trotsenko, Y.A. Methylophaga muralis sp. nov. in List of New Names and new combinations previously effectively, but not validly, published, validation list no. 138, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 475–476.CrossRefGoogle Scholar
  12. Doronina, N.V., Trotsenko, Y.A., and Tourova, T.P. Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 1849–1859.CrossRefPubMedGoogle Scholar
  13. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids. Symp. Ser., Oxford Univ. Press. 1999, no. 41, pp. 95–98.Google Scholar
  14. Han, G.H., Kim, W., Chun, J., and Kim, S.W., Draft genome sequence of Methylophaga aminisulfidivorans MPT, J. Bacteriol., 2011, vol. 193, p. 4265.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Janvier, M., Frehel, C., Grimont, F., and Gasser, F., Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs, Int. J. Syst. Bacteriol., 1985, vol. 35, pp. 131–139.CrossRefGoogle Scholar
  16. Kim, H.G., Doronina, N.V., Trotsenko, Y.A., and Kim, S.W., Methylophaga aminisulfidivorans sp. nov., a restricted facultatively methylotrophic marine bacterium, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 2096–2101.CrossRefPubMedGoogle Scholar
  17. Kumada, Y., Benson, D.R., Hillemann, D., Hosted, T.J., Rochefort, D.A., Thompson, C.J., Wohlleben, W., and Tateno, Y., Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes (gene duplication/molecular evolution/pre-prokaryote-eukaryote evolution), Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, pp. 3009–3013.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Markowitz, V.M., Chen, I.-M.A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., Huntemann, M., Anderson, I., Mavromatis, K., Ivanova, N.N., and Kyrpides, N.C., IMG: the integrated microbial genomes database and comparative analysis system, Nucl. Acids Res., 2012, vol. 40. Database issue: D123–129.CrossRefPubMedGoogle Scholar
  19. Marmur, J.A., A procedure for the isolation of deoxyribonucleic acid from microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.CrossRefGoogle Scholar
  20. Mustakhimov, I.I., Reshetnikov, A.S., Khmelenina, V.N., and Trotsenko, Y.A., Regulatory mechanisms of biosynthesis of ectoins in halophilic bacteria, Microbiology (Moscow), 2010, vol. 79, no. 5, pp. 595–604.CrossRefGoogle Scholar
  21. Peters, P., Galinski, E.A., and Trüper, H.G., The biosynthesis of ectoine, FEMS Microbiol. Lett., 1990, vol. 71, pp. 157–162.CrossRefGoogle Scholar
  22. Poroshina, M.N., Doronina, N.V., Kaparullina, E.N., Kovalevskaya, N.P., and Trotsenko, Yu.A., Halophilic and halotolerant aerobic methylobacteria from the technogenic Solikamsk biotopes, Microbiology (Moscow), 2013, vol. 82, no. 4, pp. 490–498.CrossRefGoogle Scholar
  23. Reshetnikov, A.S., Khmelenina, V.N., and Trotsenko, Yu.A., Ectoine biosynthesis genes identification in moderate halophilic alphaproteobacteria Methylarcula marina, Microbiology (Moscow), 2010, vol. 79, no. 6, pp. 859–860.CrossRefGoogle Scholar
  24. Seemann, T., Prokka: rapid prokaryotic genome annotation, Bioinformatics, 2014, vol. 30, pp. 2068–2069.CrossRefPubMedGoogle Scholar
  25. Shetty, S.A., Marathe, N.P., Munot, H., Antony, C.P., Dhotre, D.P., Murrell, J.C., and Shouche, Y.S., Draft genome sequence of Methylophaga lonarensis MPLT, a haloalkaliphilic (non-methane-utilizing) methylotroph, Genome Announc., 2013, vol. 1, pp. 202–213.CrossRefGoogle Scholar
  26. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G., The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucl. Acids Res., 1997, vol. 25, pp. 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Trotsenko, Y.A., Doronina, N.V., and Govorukhina, N.I., Metabolism of non-motile obligately methylotrophic bacteria, FEMS Microbiol. Lett., 1986, vol. 3, pp. 293–297.CrossRefGoogle Scholar
  29. Vasilenko, O.V., Shmareva, M.N., Doronina, N.V., Tarlachkov, S.V., Mustakhimov, I.I., and Trotsenko, Y.A., Draft genome sequence of Methylophaga muralis Bur1, a haloalkaliphilic (non-methane-utilising) methylotroph from soda lake, Genome Announc., 2016, vol. 4. e01227–16.PubMedPubMedCentralGoogle Scholar
  30. Villeneuve, C., Martineau, C., Mauffrey, F., and Villemur, R. Methylophaga nitratireducenticrescens sp. nov. and Methylophaga frappieri sp. nov., isolated from the biofilm of the methanol-fed denitrification system treating the seawater at the Montreal Biodome, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 2216–2222.CrossRefPubMedGoogle Scholar
  31. Villeneuve, C., Martineau, C., Mauffrey, F., and Villemur, R., Complete genome sequences of Methylophaga sp. strain JAM1 and Methylophaga sp. strain JAM7, J. Bacteriol., 2012, vol. 194, pp. 4126–4127.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Shmareva
    • 1
    Email author
  • N. V. Doronina
    • 1
  • S. V. Tarlachkov
    • 1
  • O. V. Vasilenko
    • 1
  • Yu. A. Trotsenko
    • 1
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia

Personalised recommendations