, Volume 86, Issue 4, pp 476–486 | Cite as

Structural and functional rearrangements in the cells of actinobacteria Microbacterium foliorum BN52 during transition from vegetative growth to a dormant state and during germination of dormant forms

  • I. P. SolyanikovaEmail author
  • N. E. Suzina
  • N. S. Egozarjan
  • V. N. Polivtseva
  • A. L. Mulyukin
  • D. O. Egorova
  • G. I. El-Registan
  • L. A. Golovleva
Experimental Articles


Cellular organization of the cystlike cells (CLC) of non-spore-forming heterotrophic actinobacteria isolated from soils contaminated with chemical plant waste (Bereznyaki, Russia) and identified as Microbacterium foliorum BN52 was studied. CLC were obtained in laboratory conditions in limited or starving cultures. Two morphotypes of CLC capable of reversion to the vegetative growth were revealed and characterized in detail. The morphological, ultrastructural, and physiological peculiarities of germination and transition to the vegetative growth were studied at first for the dormant forms of M. foliorum BN52. Germination of morphotype II CLC was associated with gradual recovery of the cell shape and subcellular structures. In contrast to the germination of morphotype II CLC, during the first hours of germination of morphotype I CLC cell volume increased significantly with the subsequent formation of very large cell with sizes several times larger than the typical vegetative cells of the strain. The obtained cells were characterized by polynucleoidity, being polyploids undergoing fission at the next stage of germination, resulting in formation of numerous small and ultrasmall viable cell forms. Formation of cyst-like dormant cells, germinating in the form of polyploid cells is assumed to be the basis of survival and adaptation strategies of heterotrophic bacteria, which are incapable of toxicant degradation in natural habitats, under the conditions of the toxic pressure.


Microbacterium foliorum BN52 heterotrophic non-spore-forming bacteria development cycle cyst-like dormant cells (CLC) ultrastructural organization germination polyploidy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angert, E.R. and Clements, K.D., Initiation of intracellular offspring in Epulopiscium, Mol. Microbiol., 2004, vol. 51, pp. 827–835.CrossRefPubMedGoogle Scholar
  2. Bae, H.C., Cota-Robles, E.H., and Casida, L.E., Jr., Microflora of soil as viewed by transmission electron microscopy, Appl. Microbiol., 1972, vol. 23, pp. 637–648.PubMedPubMedCentralGoogle Scholar
  3. Behrendt, U., Ulrich, A., and Schumann, P., Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al., 1998) as Microbacterium resistens comb. nov., Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 1267–1276.CrossRefPubMedGoogle Scholar
  4. Bresler, V., Montgomery, W.L., Fishelson, L., and Pollak, P.E., Gigantism in a bacterium, Epulopiscium fishelsoni, correlates with complex patterns in arrangement, quantity, and segregation of DNA, J. Bacteriol., 1998, vol. 180, pp. 5601–5611.PubMedPubMedCentralGoogle Scholar
  5. Cavicchioli, R. and Ostrowski M., Ultramicrobacteria, in Encyclopedia of Life Sciencies. 2003., pp. 1–8.Google Scholar
  6. Dmitriev, V.V., Suzina, N.E., Barinova, E.S., Duda, V.I., and Boronin, A.M., An electron microscopic study of the ultrastructure of microbial cells in extreme biotopes in situ, Microbiology (Moscow), 2004, vol. 73, pp. 716–723.CrossRefGoogle Scholar
  7. Duda, V.I., Ultramicrobacteria, in Encyclopedia of Life Sciences, 2011. Scholar
  8. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Y.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptive functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75, pp. 446–456.Google Scholar
  9. Hansen, M.T., Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans, J. Bacteriol., 1978, vol. 134, pp. 71–75.PubMedPubMedCentralGoogle Scholar
  10. Janssen, P.H., Schuhmann, A., Mörschel, E., and Rainey, F.A., Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1382–1388.PubMedPubMedCentralGoogle Scholar
  11. Komaki, K. and Ishikawa, H. Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host, Insect. Biochem. Mol. Biol., 2000, vol. 30, pp. 253–258.CrossRefPubMedGoogle Scholar
  12. Komaki, K. and Ishikawa, H., Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium, J. Mol. Evol., 1999, vol. 48, pp. 717–722.CrossRefPubMedGoogle Scholar
  13. Kryazhevskikh, N.A., Loiko, N.G., Demkina, E.V., Mulyukin, A.L., Lebedev, A.T., Gaponov, A.M., Tutel’yan, A.V., Nikolaev, Y.A., and El’-Registan, G.I., Applicability of MALDI mass spectrometry for diagnostics of phase variants in bacterial populations, Microbiology (Moscow), 2015, vol. 84, pp. 291–310.CrossRefGoogle Scholar
  14. Loiko, N.G., Kryazhevskikh, N.A., Suzina, N.E., Demkina, E.V., Muratova, A.Yu., Turkovskaya, O.V., Kozlova, A.N., Galchenko, V.F., and El’-Registan, G.I., Resting forms of Sinorhizobium meliloti, Microbiology (Moscow), 2011, vol. 80, pp. 472–482.CrossRefGoogle Scholar
  15. Manual of Methods for General Bacteriology, Gerhardt, P., Murray, R.G.E., Costilow, R.N., Nester, E.W., Wood, W.A., Krieg, N.R., and Phillips, G.B., Eds., Washington: Amer. Soc. Microbiol., 1981.Google Scholar
  16. Minton, K.W., DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans, Mol. Microbiol., 1994, vol. 13, pp. 9–15.CrossRefPubMedGoogle Scholar
  17. Mulyukin, A.L., Demkina, E.V., Kryazhevskikh, N.A., Suzina, N.E., Vorob’yeva, L.I., Duda, V.I., Galchenko, V.F., and El-Registan, G.I., Dormant forms of Micrococcus luteus and Arthrobacter globiformis not platable on standard media, Microbiology (Moscow), 2009, vol. 78, pp. 407–418.CrossRefGoogle Scholar
  18. Mulyukin, A.L., Suzina, N.E., Duda, V.I., and El-Registan, G.I., Structural and physiological diversity among cystlike resting cells of bacteria of the genus Pseudomonas, Microbiology (Moscow), 2008, vol. 77, pp. 455–465.CrossRefGoogle Scholar
  19. Mulyukin, A.L., Suzina, N.E., Mel’nikov, V.G., Gal’chenko, V.F., and El’-Registan, G.I., Dormant state and phenotypic variability in Staphylococcus aureus and Corynebacterium pseudodiphtheriticum, Microbiology (Moscow), 2014, vol. 83, pp. 149–159.CrossRefGoogle Scholar
  20. Nagpal, P., Jafri, S., Reddy, M.A., and Das, H.K., Multiple chromosomes of Azotobacter vinelandii, J. Bacteriol., 1989, vol. 17, pp. 3133–3138.CrossRefGoogle Scholar
  21. Panikov, N.S., Contribution of nanosized bacteria to the total biomass and activity of a soil microbial community, Adv. Appl. Microbiol., 2004, vol. 57, pp. 245–296.CrossRefGoogle Scholar
  22. Pecoraro, V., Zerulla, K., Lange, C., and Soppa, J., Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-)oligoploid and polyploid species, PLoS One, 2011, vol. 6. e16392.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Raymond, R.L., Microbial oxidation of n-paraffinic hydrocarbons, Develop. Industr. Microbiol., 1961, vol. 2, pp. 23–32.Google Scholar
  24. Reynolds, E., The use of lead citrate at high pH as an electron opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Robson, R.L., Chesshyre, J.A., Wheeler, C., Jones, R., Woodley, P.R., and Postgate, J.R., Genome size and complexity in Azotobacter chroococcum, J. Gen. Microbiol., 1984, vol. 130, pp. 1603–1612.PubMedGoogle Scholar
  26. Soina, V.S., Mulyukin, A.L., Demkina, E.V., Vorobyova, E.A., and El-Registan, G.I., The structure of resting bacterial populations in soil and subsoil permafrost, Astrobiology, 2004, vol. 4, no. 3, pp. 345–358.CrossRefPubMedGoogle Scholar
  27. Solyanikova, I.P., Mulyukin, A.L., Suzina, N.E., El-Registan, G.I., and Golovleva, L.A., Improved xenobioticdegrading activity of Rhodococcus opacus strain 1cp after dormancy, J. Environ. Sci. Health B., 2011, vol. 46, pp. 638–647.CrossRefPubMedGoogle Scholar
  28. Soppa, J., Polyploidy in Archaea and Bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects, J. Mol. Microbiol. Biotechnol., 2014, vol. 24, pp. 409–419.CrossRefPubMedGoogle Scholar
  29. Sudo, S.Z. and Dworkin, M., Comparative biology of procaryotic resting cells, Adv. Microbiol. Physiol., 1973, vol. 9, pp. 153–224.CrossRefGoogle Scholar
  30. Suzina, N.E., Moulyukin, A.L., Dmitriev, V.V., Nikolaev, Yu.A., Shorokhova, A.P., Bobkova, Yu.S., Barinova, E.S., Plakunov, V.K., El’-Registan, G.I., and Duda, V.I., The structural bases of long-term anabiosis in non-spore-forming bacteria, Adv. Space Res., 2006, vol. 38, pp. 1209–1219.CrossRefGoogle Scholar
  31. Suzina, N.E., Mulyukin, A.L., Kozlova, A.N., Shorokhova, A.P., Dmitriev, V.V., Barinova, E.S., Mokhova, O.N., El’-Registan, G.I., and Duda, V.I., Ultrastructure of resting cells of some non-spore-forming bacteria, Microbiology (Moscow), 2004, vol. 73, pp. 435–447.CrossRefGoogle Scholar
  32. Tiirola, M.A., Mannisto, M.K., Puhakka, J.A., and Kulomaa, M.S., Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol degrading strain in a groundwater bioremediation system, Appl. Environ. Microbiol., 2002, vol. 68, pp. 173–180.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Torrella, F. and Morita, R.Y., Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol., 1981, vol. 41, pp. 518–527.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. P. Solyanikova
    • 1
    Email author
  • N. E. Suzina
    • 1
  • N. S. Egozarjan
    • 1
    • 2
  • V. N. Polivtseva
    • 1
  • A. L. Mulyukin
    • 3
  • D. O. Egorova
    • 4
  • G. I. El-Registan
    • 3
  • L. A. Golovleva
    • 1
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Winogradsky Institute of Microbiology, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Ecology and Genetics of Microorganisms, Ural BranchRussian Academy of SciencesPermRussia

Personalised recommendations