Microbiology

, Volume 85, Issue 2, pp 231–242 | Cite as

Effect of long-term application of agrotechnical techniques and crops on soil microbial communities

  • I. O. Korvigo
  • E. V. Pershina
  • E. A. Ivanova
  • N. S. Matyuk
  • O. A. Savos’kina
  • E. L. Chirak
  • N. A. Provorov
  • E. E. Andronov
Experimental Articles

Abstract

Effects of long-term application of various fertilizers and crops on soil microbiomes in a long-term field experiment were investigated using the library of the 16S rRNA gene sequences obtained by highthroughput sequencing of the total DNA. The communities exhibited high diversity, with 655 microbial genera belonging to 34 phyla detected (31 bacterial and 3 archaeal ones). For analysis of the effect of the studied factors on community structure, a linear model was developed in order to simplify interpretation of the data of high-throughput sequencing and to obtain biologically important information. Liming was shown to modulate the effect of mineral fertilizers on the structure of microbial populations. The differences in the structure and alpha-diversity of microbial communities were shown to depend more on the crops and liming than on the fertilizers applied. Interaction between the crop factor and liming expressed as an ambiguous effect of liming on the microbiome in the presence of different plants was reliably demonstrated. Thus, in the case of barley and clover, liming resulted in increased taxonomic diversity of the community, while in the case of potato and flax it had an opposite effect.

Keywords

stationary experiment 16S rRNA high-throughput sequencing organic fertilizers mineral fertilizers microbiome molecular ecology soil liming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, S.T., Cropsey, G.W.G., Caporaso, J.G., Knight, R., and Fierer, N., Bacterial communities associated with the lichen symbiosis, Appl. Environ. Microbiol., 2011, vol. 77, pp. 1309–1314.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brockett, B.F.T., Prescott, C.E., and Grayston, S.J., Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada, Soil Biol. Biochem., 2012, vol. 44, pp. 9–20.CrossRefGoogle Scholar
  3. Buckley, D.H. and Schmidt T.M., The structure of microbial communities in soil and the lasting impact of cultivation, Microb. Ecol., 2001, vol. 42, pp. 11–21.PubMedGoogle Scholar
  4. Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L., and Knight, R., PyNAST: a flexible tool for aligning sequences to a template alignment, Bioinformatics, 2010, vol. 26, pp. 266–267.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., QIIME allows analysis of high-throughput community sequencing data, Nature Methods, 2010, vol. 7, pp. 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chaparro, J., Sheflin, A., Manter, D., and Vivanco, J., Manipulating the soil microbiome to increase soil health and plant fertility, Biol. Fert. Soils, 2012, vol. 48, pp. 489–499.CrossRefGoogle Scholar
  7. Dumova, V.A., Pershina, E.V., Merzlyakova, Ya.V., Kruglov, Yu.V., and Andronov, E.E., Main tendencies in formation of a soil microbial community under conditions of a stationary field experiment according to high-throughput sequencing of the 16S rRNA gene libraries, Sel’skokhozyaist. Biol., 2013, no. 5, pp. 85–92.Google Scholar
  8. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460–2461.CrossRefPubMedGoogle Scholar
  9. Faith, D.P., Conservation evaluation and phylogenetic diversity, Biol. Conserv., 1992, vol. 61, pp. 1–10.CrossRefGoogle Scholar
  10. Fierer, N. and Jackson, R.B., The diversity and biogeography of soil bacterial communities, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 626–631.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fierer, N., Lauber, C.L., Ramirez, K.S., Zaneveld, J., Bradford, M.A., and Knight, R., Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients, ISME J., 2012, vol. 6, pp. 1007–1017.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Geisseler, D. and Scow, K.M., Long-term effects of mineral fertilizers on soil microorganisms, Soil Biol. Biochem., 2014, vol. 75, pp. 54–63.CrossRefGoogle Scholar
  13. Hartmann, M., Frey, B., Mayer, J., Mäder, P., and Widmer, F., Distinct soil microbial diversity under long-term organic and conventional farming, ISME J., 2015, vol. 9, pp. 1177–1194.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hollister, E.B., Engledow, A.S., Hammett, A.J.M., Provin, T.L., Wilkinson, H.H., and Gentry, T.L., Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments, ISME J., 2010, vol. 4, pp. 829–838.CrossRefPubMedGoogle Scholar
  15. Huber, T., Dalevi, D., Hu, P., and Andersen, G.L., Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microbiol., 2006, vol. 72, pp. 5069–5072.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Janssen, P.H., Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1719–1728.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kowalchuk, G.A., Buma, D.S., de Boer, W., Klinkhamer, P.G.L., and van Veen, J.A., Effect of a aboveground plant species composition and diversity on the diversity of soil-borne microorganisms, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 509–520.CrossRefPubMedGoogle Scholar
  18. Lau, J.A. and Lennon, J.T., Rapid responses of soil microorganisms improve plant fitness in novel environments, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 14058–14062.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lauber, C.L., Hamady, M., Knight, R., and Fierer, N., Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale, Appl. Environ. Microbiol., 2009, vol. 75, pp. 5111–5120.CrossRefPubMedPubMedCentralGoogle Scholar
  20. McMurdie, P.J. and Holmes, S., phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data, PLoS One, 2013, vol. 8, no. 4, pp. 61217.CrossRefGoogle Scholar
  21. Omar, S.A. and Ismail, M., Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts, Folia Microbiol., 1999, vol. 44, pp. 205–212.CrossRefGoogle Scholar
  22. Pershina, E.V., Tamazyan, G.S., Dol’nik, A.S., Pinaev, A.G., Sergaliev, N.H., and Andronov, E.E., Investigation of the structure of a microbial community of saline soils by high-throughput sequencing, Ekol. Genet., 2012, vol. 10, no. 2, pp. 31–38.Google Scholar
  23. Ramirez, K.S., Lauber, C.L., Knight, R., Bradford, M.A., and Fierer, N., Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems, Ecology, 2010, vol. 91, no. 12, pp. 3463–3470.CrossRefPubMedGoogle Scholar
  24. Shade, A., Caporaso, J.G., Handelsman, J., Knight, R., and Fierer, N., A meta-analysis of changes in bacterial and archaeal communities with time, ISME J., 2013, vol. 7, pp. 1493–1506.CrossRefPubMedPubMedCentralGoogle Scholar
  25. van Bruggen, A.H.C. and Semenov, A.M., In search of biological indicators for soil health and disease suppression, Appl. Soil. Ecol., 2000, vol. 15, pp. 13–24.CrossRefGoogle Scholar
  26. Wessén, E., Hallin, S., and Philippot, L., Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management, Soil Biol. Biochem., 2010, vol. 42, pp. 1759–1765.CrossRefGoogle Scholar
  27. Zul, D., Denzel, S., Kotz, A., and Overmann, J., Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity, Appl. Environ. Microbiol., 2007, vol. 73, no. 21, pp. 6916–6929.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. O. Korvigo
    • 1
  • E. V. Pershina
    • 1
    • 3
  • E. A. Ivanova
    • 1
  • N. S. Matyuk
    • 2
  • O. A. Savos’kina
    • 2
  • E. L. Chirak
    • 1
  • N. A. Provorov
    • 1
  • E. E. Andronov
    • 1
    • 3
    • 4
  1. 1.All-Russia Research Institute for Agricultural MicrobiologySt. PetersburgRussia
  2. 2.Russian State Agrarian University—Timiryazev Moscow Agricultural AcademyMoscowRussia
  3. 3.St. Petersburg State UniversitySt.-PetersburgRussia
  4. 4.Dokuchaev Soil InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations