, Volume 84, Issue 3, pp 419–424 | Cite as

New approaches for the isolation of bifidobacterial strains, their molecular characterization, and assessment of their probiotic potential

  • N. V. KharchenkoEmail author
  • T. A. Cherdyntseva
  • A. I. Netrusov
Experimental Articles


Six stably growing strains of bifidobacteria possessing probiotic properties were isolated from the feces of newborn children and animals. According to the results of molecular analysis, one strain was classified as Bifidobacterium bifidum, while five belonged to Bifidobacterium animalis. Initial identification of the strains was carried out using the primer pairs for the 16S rRNA gene (g-Bifid—F/R, Bif164/662) and for the xfp gene specific for bifidobacteria. Subsequent sequencing of complete genes encoding 16S rRNA synthesis in the isolates confirmed their species affiliation. The cultures exhibited high resistance to gastroenterological stress (5 ≤ RD ≤ 10) and may therefore be recommended as potential probiotics.


isolation of bifidobacteria molecular genetic identification storage of bacteria stress resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AlvarezCalatayud, G., PerezMoreno, J., Tolin, M., and Sanchez, C., Clinical aplication of the use of pro biotics in pediatries, Nutr. Hosp., 2013, vol. 2, no. 3, pp. 564–574.Google Scholar
  2. 2.
    Timko, J., Effect of probiotics on the fecal microflora after radiotherapy: a pilot study, Ind. J. Pathol. Microbiol., 2013, vol. 2, no. 3, pp. 31–35.CrossRefGoogle Scholar
  3. 3.
    Barrett, E., Guinane, C., Ryan, C., Dempsey, E., Mur-phy, B., O’Toole, P., Fizgerald, G., Cotter, P., Ross, R., and Stantin, C., Microbiota diversity and stability of the pretem neonatal ileum and colon of two infants, Microbiology Open, 2013, vol. 2, no. 3, pp. 215–225.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ivanova, E.V. and Perunova, N.B., Effect of yeast exometabolites on the growth properties of bifidobacteria, in Sbornik materialov vtorogo s”ezda mikologov Rossii “Sovremennaya mikologiya v Rossii” (Proc. 2nd Congr. Russ. Mycologists “Modern Mycology in Russia”), Moscow: Natl. Acad. Mycol., 2008, pp. 274–275.Google Scholar
  5. 5.
    Oozeer, R., van Limpt, K., Ludwig, T., Ben Amor, K., Martin, R., Wind, R.D., Boehm, G, and Knol, J., Intestinal microbiology in early life: specific prebiotics can have similar functionalities as human milk oligosacchariles, Amer. J. Clin. Nutr., 2013, vol. 2, no. 3, pp. 561–571.CrossRefGoogle Scholar
  6. 6.
    Bunesova, V., Vikova, E., Rada, V., Killer, J., and Kmet, V., Identification of bifidobacteria isolated from Asian elephant, J. Biosci., 2013, vol. 38, no. 2, pp. 239–243.PubMedCrossRefGoogle Scholar
  7. 7.
    Novakova, J., Vlkona, E., Bonusova, B., and Koko-ska, L., In vitro selective inhibitory effect of 8-hydrox-yquinoline against bifidobacteria and clostridia, Anaerobe, 2013, vol. 2, no. 3, pp. 134–136.CrossRefGoogle Scholar
  8. 8.
    Kondo, S., Kamei, A., Xiao, J., Iwatsuki, K., and Abe, K., Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with highfat dietinduced obesity, Biosci. Biotechnol. Biochem., 2010, vol. 2, no. 3, pp. 1656–1661.CrossRefGoogle Scholar
  9. 9.
    Scully, P., Macsharry, J., O’Mahony, D., Lyons, A., O’Brien, F., Murphy, S., Shanahan, F., and O’Mahony, L., Bifidobacterium infantis suppression of Deyer’s patch MIP-1a and MIP-1ß correlates with increased local CD4 + C25 + T cell numbers, Cell Immunol., 2013, vol. 2, no. 3, pp. 134–140.CrossRefGoogle Scholar
  10. 10.
    Laparra, J., Olivares, M., Gallina, O., and Sanz, Y., Bifidobacterium longum CECT 7347 modulates immune responses in a gliadininduced enteropathy ani mal model, PLoS One, 2012, vol. 7, no. 2, pp. 30744–30759.CrossRefGoogle Scholar
  11. 11.
    Ustyugova, E.A., Timofeeva, A.V., Stoyanova, L.G., Netrusov, A.I., and Katrukha, G.S., Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K, Appl. Biochem. Microbiol., 2012, vol. 2, no. 3, pp. 557–563.CrossRefGoogle Scholar
  12. 12.
    Charteris, W., Kelly, P., Morelli, L., and Collins, J., Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract, J. Appl. Microbiol., 1998, vol. 2, no. 3, pp. 759–768.CrossRefGoogle Scholar
  13. 13.
    Boulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., and Gal’chenko, V.F., A study of nucleotide sequences of nifH genes of some methanotrophic bacteria, Microbiology (Moscow), 2002, vol. 2, no. 3, pp. 425–432.CrossRefGoogle Scholar
  14. 14.
    Lane, D., 16S/23S sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., Chichester: Wiley, 1991, pp. 115–175.Google Scholar
  15. 15.
    Sanger, F., Nicklen, S., and Coulson, A., DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 2, no. 3, pp. 5463–5467.CrossRefGoogle Scholar
  16. 16.
    Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T., BLAST+: architecture and applications, BMC Bioinformatics, 2009, vol. 2, no. 3, pp. 421–439.CrossRefGoogle Scholar
  17. 17.
    Jamalifar, H., Biqdeli, B., Nowroozi, J., Zolfaghari, H., and Fazeli, M., Selection for autochthonous bifidobacterial isolates adapted to simulated gastrointestinal fluid, Daru, 2010, vol. 2, no. 3, pp. 57–66.Google Scholar
  18. 18.
    Pinto, M., Franz, C., Schilinger, U., and Holzapfel, W., Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products, Int. J. Food Microbiol., 2006, vol. 2, no. 3, pp. 205–214.CrossRefGoogle Scholar
  19. 19.
    Baffoni, L., Stenico, V., Strahsburger, E., Gaggia, F., Di Gioia, D., Modesto, M., Mattarelli, P., and Bia-vati, B., Identification of species belonging to the Bifi-dobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment, BMC Microbiol., 2013, vol. 13, p. 149. doi: 10.1186/1471-2180-13-149 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H.B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X,. Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., and Weis-senbach, J., A human gut microbial gene catalogue established by metagenomic sequencing, Nature, 2010, vol. 2, no. 3, pp. 59–65.CrossRefGoogle Scholar
  21. 21.
    Matsuki, T., Watanabe, K., and Tanaka, R., Genus and species-specific PCP primers for the detection and identification of bifidobacteria, Curr. Issues Intest. Microbiol., 2003, vol. 2, no. 3, pp. 61–69.Google Scholar
  22. 22.
    Piksasova, O., A new approach to molecular diagnos-tics of bifidobacteria, Extended Abstract Cand. Sci. (Biol.) Dissertation, Moscow: Mos. Gos. Univ., 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. V. Kharchenko
    • 1
    Email author
  • T. A. Cherdyntseva
    • 1
  • A. I. Netrusov
    • 1
  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations