Microbiology

, Volume 84, Issue 2, pp 112–124 | Cite as

CO2-concentrating mechanism and its traits in haloalkaliphilic cyanobacteria

Reviews

Abstract

Cyanobacteria are a group of oxygenic phototrophs that have existed for at least 3.5 Ga. Photosynthetic CO2 assimilation by cyanobacteria occurs via the Calvin cycle, with RuBisCO, its key enzyme, having very low affinity to CO2. This is due to the fact that atmospheric CO2 concentration in Archaean, when the photosynthetic apparatus evolved, was several orders higher than now. Later, in the epoch of Precambrian microbial communities, CO2 content in the atmosphere decreased drastically. Thus, present-day phototrophs, including cyanobacteria, require adaptive mechanisms for efficient photosynthesis. In cyanobacterial cells, this function is performed by the CO2-concentrating mechanism (CCM), which creates elevated CO2 concentrations in the vicinity of RuBisCO active centers, thus significantly increasing the rate of CO2 fixation in the Calvin cycle. CCM has been previously studied only for freshwater and marine cyanobacteria. We were the first to investigate CCM in haloalkaliphilic cyanobacteria from soda lakes. Extremophilic haloalkaliphilic cyanobacteria were shown to possess a well-developed CCM with the structure and functional principles similar to those of freshwater and marine strains. Analysis of available data suggests that regulation of the amount of inorganic carbon transported into the cell is probably the general CCM function under these conditions.

Keywords

CO2-concentrating mechanism (CCM) cyanobacteria transport systems carboxysomes carbonic anhydrase soda lakes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raven, J.A., Cockell, C.S., and De La Rocha, C.L., The evolution of inorganic carbon concentrating mechanisms in photosynthesis, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2008, vol. 363, pp. 2641–2650.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Price, G.D., Badger, M.R., Wodger, F.J., and Long, B.M., Advances in understanding the cyanobacterial CO2-concentrating mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants, J. Exp. Bot., 2008, vol. 59, pp. 1441–1461.CrossRefPubMedGoogle Scholar
  3. 3.
    Price, G.D., Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism, Photosynth. Res., 2011, vol. 109, pp. 47–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Kupriyanova, E.V., Sinetova, M.A., Cho, S.M., Park, Y.-I., Los, D.A., and Pronina N.A., CO2-concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role and evolutionary origin, Photosynth. Res., 2013, vol. 117, pp. 133–146.CrossRefPubMedGoogle Scholar
  5. 5.
    Moroney, J.V., Jungnick, N., DiMario, R.J., and Longstreth, D.J., Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions, Photosynth. Res., 2013, vol. 117, pp. 121–131.CrossRefPubMedGoogle Scholar
  6. 6.
    DeRuyter, Y.S. and Fromme, P., Molecular structure of the photosynthetic apparatus, in The Cyanobacteria: Molecular Biology, Genetics and Evolution, Herrero, A. and Flores, E., Eds., Norfolk: Caister, 2008, pp. 217–270.Google Scholar
  7. 7.
    Jordan, D.B. and Ogren, W.L., Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase, Nature, 1981, vol. 291, pp. 513–515.CrossRefGoogle Scholar
  8. 8.
    Tabita, F.R., Satagopan, S., Hanson, T.E., Kreel, N.E., and Scott, S.S., Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships, J. Exp. Bot., 2008, pp. 1515–1524.Google Scholar
  9. 9.
    Badger, M.R. and Spalding, M.H., CO2 acquisition, concentration and fixation in cyanobacteria and algae, in Photosynthesis: Physiology and Metabolism, Leegood, R.C., Sharkey, T.D., and von Caemmerer, S., Eds., Dordrecht: Kluwer, 2000, pp. 369–397.CrossRefGoogle Scholar
  10. 10.
    Delwiche, C.F., Tracing the thread of plastid diversity through the tapestry of life, Am. Nat., 1999, vol. 154, pp. 164–177.CrossRefGoogle Scholar
  11. 11.
    Badger, M.R., Hanson, D., and Price, G.D., Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria, Funct. Plant Biol., 2002, vol. 29, no. 2, pp. 161–173.CrossRefGoogle Scholar
  12. 12.
    Espie, G.S. and Kimber, M.S., Carboxysomes: cyanobacterial RubisCO comes in small packages, Photosynth. Res., 2011, vol. 109, pp. 7–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Cannon, G.C., Heinhorst, S., and Kerfeld, C.A., Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation, Biochim. Biophys. Acta, 2010, vol. 1804, pp. 382–392.CrossRefPubMedGoogle Scholar
  14. 14.
    Rae, B.D., Long, B.M., Badger, M.R., and Price, G.D., Functions, compositions, and evolution of the two types of carboxysomes: polyhedral micro-compartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria, Microbiol. Mol. Biol. Rev., 2013, vol. 77, pp. 357–379.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Whitehead, L., Long, B.M., Price, G.D., and Badger, M.R., Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria, Plant Physiol., 2014, vol. 165, pp. 398–411.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Kasting, J.F., Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere, Precambrian Res., 1987, vol. 34, pp. 205–229.CrossRefPubMedGoogle Scholar
  17. 17.
    Zavarzin, G.A., Microbial biosphere, in Biosphere Origin and Evolution, Dobretsov, N.L., Kolchanov, N.A., Rosanov, A.Y., and Zavarzin, G.A., Eds., New York: Springer Science + Business Media, LLC, 2008, pp. 25–42.CrossRefGoogle Scholar
  18. 18.
    Tcherkez, G.G., Farquhar, G.D., and Andrews, T.J., Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 7246–7251.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Whitney, S.M., Houtz, R.L., and Alonso, H., Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme Rubisco, Plant Physiol., 2011, vol. 155, pp. 27–35.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Galmés, J., Kapralov, M.V., Andralojc, P.J., Conesa, M.A., Keys, A.J., Parry, M.A., and Flexas, J., Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends, Plant Cell Environ., 2014, vol. 37, pp. 1989–2001.CrossRefPubMedGoogle Scholar
  21. 21.
    Jungnick, N., Ma, Y., Mukherjee, B., Cronan, J.C., Speed, D.J., Laborde, S.M., Longstreth, D.J., and Moroney, J.V., The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces, Photosynth. Res., 2014, vol. 121, pp. 159–173.CrossRefPubMedGoogle Scholar
  22. 22.
    Field, C.B., Behrenfeld, M.J., Randerson, J.T., and Falkowski, P., Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 1998, vol. 281, pp. 237–240.CrossRefPubMedGoogle Scholar
  23. 23.
    Cameron, J.C., Wilson, S.C., Bernstein, S.L., and Kerfeld, C.A., Biogenesis of a bacterial organelle: the carboxysome assembly pathway, Cell, 2013, vol. 155, pp. 1131–1140.CrossRefPubMedGoogle Scholar
  24. 24.
    Kinney, J.N., Axen, S.D., and Kerfeld, C.A., Comparative analysis of carboxysome shell proteins, Photosynth. Res., 2011, vol. 109, pp. 21–32.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Sonnenfeld, P., Brines and Evaporites, Orlando: Academic, 1984.Google Scholar
  26. 26.
    Marcus, Y., Distribution of inorganic carbon among its component species in cyanobacteria: do cyanobacteria in fact actively accumulate inorganic carbon?, J. Theor. Biol., 1997, vol. 187, pp. 31–45.CrossRefGoogle Scholar
  27. 27.
    Kaplan, A. and Reinhold, L., CO2 concentrating mechanisms in photosynthetic microorganisms, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 539–570.CrossRefPubMedGoogle Scholar
  28. 28.
    Pronina, N.A., The organization and physiological role of the CO2-CM in microalgal photosynthesis, Russ. J. Plant Physiol., 2000, vol. 47, no. 5, pp. 706–714.Google Scholar
  29. 29.
    Omata, T., Price, G.D., Badger, M.R., Okamura, M., Gohta, S., and Ogawa, T., Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC7942, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 13571–13576.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., and Ogawa, T., Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. Function and phylogenetic analysis, J. Biol. Chem., 2002, vol. 277, pp. 18658–18664.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang, P.P., Battchikova, N., Jansen, T., Appel, J., Ogawa, T., and Aro, E.M., Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803, Plant Cell, 2004, vol. 16, pp. 3326–3340.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Price, G.D., Woodger, F.J., Badger, M.R., Howitt, S.M., and Tucker, L., Identification of a SulP-type bicarbonate transporter in marine cyanobacteria, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 18228–18233.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Shibata, M., Ohkawa, H., Kaneko, T., Fukuzawa, H., Tabata, S., Kaplan, A., and Ogawa, T., Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 11789–11794.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Maeda, S., Badger, M.R., and Price, G.D., Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942, Mol. Microbiol., 2002, vol. 43, pp. 425–435.CrossRefPubMedGoogle Scholar
  35. 35.
    Badger, M.R., Price, G.D., Long, B.M., and Woodger, F.J., The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism, J. Exp. Bot., 2006, vol. 57, no. 2, pp. 249–265.CrossRefPubMedGoogle Scholar
  36. 36.
    Badger, M.R. and Price, G.D., CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution, J. Exp. Bot., 2003, vol. 54, no. 383, pp. 609–622.CrossRefPubMedGoogle Scholar
  37. 37.
    Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications. Subcellular Biochemistry 75, Frost, S.C. and McKenna, R., Eds., Dordrecht: Springer Science+Business Media, 2014.Google Scholar
  38. 38.
    Cot, S.S., So, A.K., and Espie, G.S., A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria, J. Bacteriol., 2008, vol. 190, pp. 936–945.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Penã, K.L., Castel, S.E., de Araujo, C., Espie, G.S., and Kimber, M.S., Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 2455–2460.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Rae, B.D., Long, B.M., Whitehead, L.F., Förster B., Badger, M.R., and Price, G.D., Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation, J. Mol. Microbiol. Biotechnol., 2013, vol. 23, pp. 300–307.CrossRefPubMedGoogle Scholar
  41. 41.
    Cannon, G.C., Bradburne, C.E., Aldrich, H.C., Baker, S.H., Heinhorst, S., and Shively, J.M., Microcompartments in prokaryotes: carboxysomes and related polyhedra, Appl. Environ. Microbiol., 2001, vol. 67, pp. 5351–5361.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Zavarzin, G.A., Epicontinental soda lakes as presumable relic biotopes of formation of terrestrial biota, Mikrobiologiya, 1993, vol. 62, pp. 477–479.Google Scholar
  43. 43.
    Dubinin, A.V., Gerasimenko, L.M., and Zavarzin, G.A., Ecophysiology and species diversity of cyanobacteria in Lake Magadi, Microbiology (Moscow), 1995, vol. 64, pp. 717–721.Google Scholar
  44. 44.
    Mikhodyuk, O.S., Gerasimenko, L.M., Akimov, V.N., Ivanovsky, R.N., and Zavarzin, G.A., Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi, Microbiology (Moscow), 2008, vol. 77, no. 6, pp. 717–725.CrossRefGoogle Scholar
  45. 45.
    Gerasimenko, L.M., Mityushina, L.L., and Namsaraev, B.B., Microcoleus mats from alkaliphilic and halophilic communities, Microbiology (Moscow), 2003, vol. 72, pp. 71–79.CrossRefGoogle Scholar
  46. 46.
    Namsaraev, Z.B., Gorlenko, V.M., Buryukhaev, S.P., Barkhutova, D.D., Dambaev, V.B., Dulov, L.E., Sorokin, D.Yu., and Namsaraev, B.B., Water regime and variations in hydrochemical characteristics of the soda salt Lake Khilganta (Southeastern Transbaikalia), Water Res., 2010, vol. 37, no. 4, pp. 513–519.CrossRefGoogle Scholar
  47. 47.
    Mikhodyuk, O.S., Zavarzin, G.A., and Ivanovsky, R.N., Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp., Microbiology (Moscow), 2008, vol. 77, no. 4, pp. 412–418.CrossRefGoogle Scholar
  48. 48.
    Samylina, O.S., Carbon-concentrating mechanism as a component of adaptation of an extremely halophilic cyanobacterium ‘Euhalothece natronophila’ to soda lake environment, Extended Abstract Cand. Sci. (Biol.) Dissertation, Moscow, 2008.Google Scholar
  49. 49.
    Samylina, O.S. and Ivanovsky, R.N., CO2-concentrating mechanism of cyanobacteria, Trudy Instituta mikrobiologii imeni S.N. Vinogradskogo (Proc. Winogradsky Inst. Microbiol.), vol. 15. Photosynthetic Bacteria, Gal’chenko, V.F., Ed., Moscow: MAKS, 2010, pp. 86–117.Google Scholar
  50. 50.
    Kupriyanova, E., Villarejo, A., Markelova, A., Gerasimenko, L., Zavarzin, G., Samuelsson, G., Los, D.A., and Pronina, N., Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes, Microbiology (UK), 2007, vol. 153, pp. 1149–1156.CrossRefGoogle Scholar
  51. 51.
    Kupriyanova, E.V., Sinetova, M.A., Markelova, A.G., Allakhverdiev, S.I., Los, D.A., and Pronina, N.A., Extracellular β-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes, J. Photochem. Photobiol., 2011, vol. 103, pp. 78–86.CrossRefGoogle Scholar
  52. 52.
    Dudoladova, M.V., Kupriyanova, E.V., Markelova, A.G., Sinetova, M.P., Allakhverdiev, S.I., and Pronina, N.A., The thylakoid carbonic anhydrase associated with photosystem II is the component of inorganic carbon accumulating system in cells of halo- and alkaliphilic cyanobacterium Rhabdoderma lineare, Biochimica et Biophysica Acta-Bioenergetics, 2007, vol. 1767, pp. 616–623.CrossRefGoogle Scholar
  53. 53.
    Kupriyanova, E.V., Lebedeva, N.V., Dudoladova, M.V., Gerasimenko, L.M., Alekseeva, S.G., Pronina, N.A., and Zavarzin, G.A., Carbonic anhydrase activity of alkalophilic cyanobacteria from soda lakes, Russ. J. Plant Physiol., 2003, vol. 50, pp. 532–539.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations