Microbiology

, Volume 83, Issue 6, pp 880–887 | Cite as

Capacity of hyperthermophilic Crenarchaeota for decomposition of refractory proteins (α- and β-keratins)

  • S. Kh. Bidzhieva
  • K. S. Derbikova
  • I. V. Kublanov
  • E. A. Bonch-Osmolovskaya
Experimental Articles
  • 69 Downloads

Abstract

Anaerobic thermophilic archaea of the genera Thermogladius and Desulfurococcus capable of α- and β-keratin decomposition were isolated from hot springs of Kamchatka and Kunashir Island. For two of them (strains 2355k and 3008g), the presence of high-molecular mass, cell-bound endopeptidases active against nonhydrolyzed and partially hydrolyzed proteins at high values of temperature and pH was shown. Capacity for β-keratin decomposition was also found in collection strains (type strains of Desulfurococcus amylolyticus subsp. amylolyticus, D. mucosus subsp. mobilis, and D. fermentans).

Keywords

hyperthermophilic archaea hydrolytic microorganisms keratin peptidases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alibardi, L., Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes, J. Exp. Zool. B: Mol. Dev. Evol., 2003, vol. 298, pp. 12–41.CrossRefGoogle Scholar
  2. 2.
    Maderson, P.F., Rabinowitz, T., Tandler, B., and Alibardi, L., Ultrastructural contributions to an under-standing of the cellular mechanisms involved in lizard skin shedding with comments on the functions and evolution of a unique lepidosaurian phenomenon, J. Morphol., 1998, vol. 236, pp. 1–24.CrossRefGoogle Scholar
  3. 3.
    Dalla Valle, L., Nardi, A., Belvedere, P., Toni, M., and Alibardi, L., Betakeratins of differentiating epidermis of snake show that they are glycine-proline-rich proteins with an avian-like gene organization, Dev. Dyn., 2007, vol. 236, pp. 1939–1953.PubMedCrossRefGoogle Scholar
  4. 4.
    Brandelli, A., Daroit, D.J., and Riffel, A., Biochemical features of microbial keratinases and their production and applications, Appl. Microbiol. Biotechnol., 2010, vol. 85, pp. 1735–1750.PubMedCrossRefGoogle Scholar
  5. 5.
    Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A., and Al-Zarban, S., Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources, Bioresour. Technol., 1998, vol. 66, pp. 1–11.CrossRefGoogle Scholar
  6. 6.
    Brandelli, A., Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond, Food Bioprocess. Technol., 2008, vol. 1, pp. 105–116.CrossRefGoogle Scholar
  7. 7.
    Ghosh, A., Chakrabarti, K., and Chattopadhyay, D., Cloning of feather-degrading minor extracellular protease from Bacillus cereus DCUW: dissection of the structural domains, Microbiology (UK), 2009, vol. 155, pp. 2049–2057.CrossRefGoogle Scholar
  8. 8.
    Nam, G.W., Lee, D.W., Lee, H.S., Lee, N.J., Kim, B.C., Choe, E.A., Hwang, J.K., Suhartono, M.T., and Pyun, Y.R., Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase producing thermophilic anaerobe, Arch. Microbiol., 2002, vol. 178, pp. 538–547.PubMedCrossRefGoogle Scholar
  9. 9.
    Moallaei, H., Zaini, F., Larcher, G., Beucher, B., and Bouchara, J.P., Partial purification and characterization of a 37 kDa extracellular proteinase from Trichophyton vanbreuseghemii, Mycopathologia, 2006, vol. 161, pp. 369–375.PubMedCrossRefGoogle Scholar
  10. 10.
    Nouripour-Sisakht, S., Rezaei-Matehkolaei, A., Abastabar, M., Najafzadeh, M.J., Ahmadi, B., and Hosseinpour, L., Microsporum fulvum, an ignored pathogenic dermatophyte: a new clinical isolation from Iran, Mycopathologia, 2013, vol. 176, pp. 157–160.PubMedCrossRefGoogle Scholar
  11. 11.
    Cao, L., Tan, H., Liu, Y., Xue, X., and Zhou, S., Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather, Lett. Appl. Microbiol., 2008, vol. 46, pp. 389–394.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsiroulnikov, K., Rezai, H., Bonch-Osmolovskaya, E., Nedkov, P., Gousterova, A., Cueff, V., Godfroy, A., Barbier, G., Mutro, F., Chobert, J.-M., Clayette, P., Dormont, D., Grosclaude, J., and Haertle, T., Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and streptomyces subspecies, J. Agric. Food Chem., 2004, vol. 52, pp. 6353–6360.PubMedCrossRefGoogle Scholar
  13. 13.
    Kublanov, I.V., Bidjieva, S.Kh., Mardanov, A.V., and Bonch-Osmolovskaya, E.A., Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1743–1747.PubMedCrossRefGoogle Scholar
  14. 14.
    Kublanov, I.V., Perevalova, A.A., Slobodkina, G.B., Lebedinsky, A.V., Bidzhieva, S.Kh., Kolganova, T.V., Rumsh, L.D., Haertle, T., and Bonch-Osmolovskaya, E.A., Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka, Appl. Environ. Microbiol., 2009, vol. 75, pp. 286–291.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Widdel, F. and Bak, F., Gram-negative mesophilic sulfate-reducing bacteria, in The Prokaryotes, 2nd ed., Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H., Eds., New York: Springer, 1992, pp. 3352–3378.CrossRefGoogle Scholar
  16. 16.
    Perevalova, A.A., Svetlichny, V.A., Kublanov, I.V., Chernyh, N.A., Kostrikina, N.A., Tourova, T.P., Kuznetsov, B.B., and Bonch-Osmolovskaya, E.A., Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 995–999.PubMedCrossRefGoogle Scholar
  17. 17.
    Park, D., Genomic DNA isolation from different biological materials, in Protocols for Nucleic Acid Analysis by Nonradioactive Probes, 2nd ed., Hilario, E. and Mackay, J., Eds., Totowa: Humana, 2007, vol. 353, pp. 3–13.CrossRefGoogle Scholar
  18. 18.
    Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Tourova, T.P., Kolganova, T.V., and Bonch-Osmolovskaya, E.A., Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring, Int. J. Syst. Evol. Microbiol., 2002, vol. 59, pp. 1961–1967.CrossRefGoogle Scholar
  19. 19.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Bidzhieva, S.Kh., Perevalova, A.A., Podosokorskaya, O.A., Lebedinsky, A.V., and Bonch-Osmolovskaya, E.A., Metabolic diversity of Desulfurococcus spp. and reclassification of Desulfurococcus kamchatkensis as Desulfurococcus amylolyticus subsp. kamchatkens, 12th Thermophiles, Regensburg, 2013, p. 82.Google Scholar
  21. 21.
    Kublanov, I.V., New anaerobic thermophilic prokaryotes and their hydrolytic enzymes, Cand. Sci. (Biol.) Dissertation, Moscow: Institute of Microbiology. 2007.Google Scholar
  22. 22.
    Mardanov, A.V., Kochetkova, T.V., Beletsky, A.V., Bonch-Osmolovskaya, E.A., Ravin, N.V., and Skryabin, K.G., Complete genome sequence of the hyperthermophilic cellulolytic crenarchaeon “Thermogladius cellulolyticus” 1633, J. Bacteriol., 2012, vol. 194, no. 16, pp. 4446–4447.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Kashefi, K., Extremophiles. Microbiology and biotechnology, in Hyperthermophiles: Metabolic Diversity and Biotechnological Applications, Anitori, R.P, Ed., Norfolk: Caister Academic, 2012, pp. 183–231.Google Scholar
  24. 24.
    Gradisar, H., Friedrich, J., Krizaj, I., and Jerala, R., Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases, Appl. Environ. Microbiol., 2005, vol. 71, pp. 3420–3426.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kojima, M., Kanai, M., Tominaga, M., Kitazume, S., Inoue, A., and Horikoshi, K., Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01, Extremophiles, 2006, vol. 10, pp. 229–235.PubMedCrossRefGoogle Scholar
  26. 26.
    Gupta, R., Sharma, R., and Beg, Q.K., Revisiting microbial keratinases: next generation proteases for sustainable biotechnology, Crit. Rev. Biotechnol., vol. 33, no. 2, pp. 216–228.Google Scholar
  27. 27.
    Friedrich, A.B. and Antranikian, G., Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2875–2882.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Riessen, S. and Antranikian, G., Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity, Extremophiles, 2001, vol. 5, pp. 399–408.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. Kh. Bidzhieva
    • 1
  • K. S. Derbikova
    • 1
  • I. V. Kublanov
    • 1
  • E. A. Bonch-Osmolovskaya
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations