Advertisement

Microbiology

, Volume 83, Issue 5, pp 484–497 | Cite as

Biodegradation perspectives of azo dyes by yeasts

  • Narjes JafariEmail author
  • Mohammad Reza Soudi
  • Rouha Kasra-Kermanshahi
Review

Abstract

Azo dyes are the largest class of synthetic dyes, which are widely used in the textile industry. The amount of dyestuff does not bind to the fibers and is lost in wastewater during textile processing. The discharge of colored effluents into the environment is not only aesthetically unpleasing. Moreover, dyes and their break-down products cause toxic effects and they affect photosynthetic activity of aquatic systems by reducing light penetration. A number of microorganisms belonging to different taxonomic groups of bacteria, algae, fungi and yeast have been reported for their ability to decolorize azo dyes. In the literature the ability to decolorize azo dyes by yeasts, compared to bacterial and fungal species, has been studied in a few reports. Within this review, an attempt is made to elucidate some basic biological aspects associated with the azo dye degradation by yeasts and enzymes involved that are responsible for degradation process.

Keywords

azo dyes biodegradation decolorization textile wastewater yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lucas, M.S., Dias, A.A., Sampaio, A., Amaral, C., and Peres, J.A., Degradation of a textile reactive azo dye by a combined chemical-biological process: Fenton,s reagent-yeast, Water Res., 2007, vol. 41, pp. 1103–1109.PubMedCrossRefGoogle Scholar
  2. 2.
    Waghmode, T.R., Kurade, M.B., Kabra, A.N., and Govindwar, S.P., Degradation of Remazol Red dye by Galactomyces geotrichum MTC 1360 leading to increased iron uptake in Sorghum vulgare and Phaseolus mungo from soil, Biotechnol. Bioprocess. Eng., 2012, vol. 17.Google Scholar
  3. 3.
    Aracagök, Y.D., and Cihangir, N., Decolorization of Reactive Black 5 by Yarrowia lipolytica NBRC 1658, Amer. J. Microbiol. Res., 2013, vol. 1, pp. 16–20.CrossRefGoogle Scholar
  4. 4.
    O’Neill, C., Hawkes, F.R., Hawkes, D.L., Lourenco, N.D., Pinheiro, H.M., and Delée, W., Colour in textile effluents-sources, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol., 1999, vol. 74, pp. 1009–1018.CrossRefGoogle Scholar
  5. 5.
    Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., and Forsythe, S., The toxicity of textile reactive azo dyes after hydrolysis and decolorization, J Biotechnol., 2003, vol. 101, p. 49.Google Scholar
  6. 6.
    dos Santos, A.B., Cervantes, F.J., and van Lier, J.B., Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology, Biores. Technol., 2007, vol. 98, pp. 2369–2385.CrossRefGoogle Scholar
  7. 7.
    Vitor, V. and Corso, C.R., Decolorization of textile dye by Candida albicans isolated from industrial effluents, J. Ind. Microbiol. Biotechnol., 2008, vol. 35, pp. 1353–1357.PubMedCrossRefGoogle Scholar
  8. 8.
    Buckley, C.A., Membrane technology for the treatment of dyehouse effluents, Water. Sd. Technol., 1992, vol. 25, pp. 203–209.Google Scholar
  9. 9.
    Shaul, G.M., Holdsworth, T.J., Dempsey, C.R., and Dostal, K.A., Fate of water soluble azo dyes in the activated sludge process, Chemosphere, 1991, vol. 22, pp. 107–119.CrossRefGoogle Scholar
  10. 10.
    Reddy, C.A., Potential of whit-rot fungi in the treatment of pollutants, Curr. Opin. Biotechnol., 1995, vol. 6, pp. 320–328.CrossRefGoogle Scholar
  11. 11.
    McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I.M., Marchant, R., and Smyth, W.F., Microbial decolorization and degradation of textile dyes, Appl. Microbiol. Biotechnol., 2001, vol. 56, pp. 81–87.PubMedCrossRefGoogle Scholar
  12. 12.
    Saratale, R.G., Saratale, G.D., Chang, J.S., and Govindwar, S.P., Decolorization and biodegradation of textile Navy blue HER by Trichosporon begelii NCIM-3326, J. Hazard. Mater., 2009, vol. 166, pp. 1421–1428.PubMedCrossRefGoogle Scholar
  13. 13.
    Jadhav, J.P., Parshetti, G.K., Kalme, S.D., and Govindwar, S.P., Decolorization of azo dye methyl red by Saccharomyces cerevisiae MTC 463, Chemosphere, 2007, vol. 68, pp. 394–400.PubMedCrossRefGoogle Scholar
  14. 14.
    Martorell, M.M., Pajot, H.F., Rovati, J.I., and Figueroa, L.I.C., Optimization of culture medium composition for manganese peroxidase and tyrosinase production during Reactive Black 5 decolorization by the yeast Trichosporon akiyoshidainum, Yeast, 2012, vol. 29, pp. 137–144PubMedCrossRefGoogle Scholar
  15. 15.
    Jinqi, L. and Houtian, L., Degradation of azo dyes by algae, Environ. Pollut., 1992, vol. 75, pp. 273–278.PubMedCrossRefGoogle Scholar
  16. 16.
    Spadaro, J.T., Gold, M.H., and Renganathan, V., Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol., 1992, pp. 2397–2401.Google Scholar
  17. 17.
    Yang, Q., Yang, M., Pritsch, K., Yediler, A., Hagn, A., Schloter, M., and Kettrup, A., Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates, Biotechnol, Lett., 2003, vol. 25, pp. 709–713.CrossRefGoogle Scholar
  18. 18.
    Acuner, E. and Dilek, F.B., Treatment of tectilon yellow 2G by Chlorella vulgaris, Process. Biochem., 2004, vol. 39, pp. 623–631.CrossRefGoogle Scholar
  19. 19.
    Li, J.G., Lalman, J.A, and Biswas, N., Biodegradtion of Red B dye by Bacillus sp. OY1–2, Environ. Technol., 2004, vol. 25, pp. 1167–1176.PubMedCrossRefGoogle Scholar
  20. 20.
    Yeh, M.S. and Chang, J.S., Bacterial decolorization of an azo dye with a natural isolate of Pseudomonas luteola and genetically modified Escherichia coli, J. Chem. Technol. Biotechnol., 2004, vol. 79, pp. 1354–1360.CrossRefGoogle Scholar
  21. 21.
    Gregorio, S.D., Balestri, F., Basile, M., Matteini, V., Gini, F., and Giansanti, S., Tozzi, MG., Basosi, R, and Lorenzi, R., Sustainable discoloration of textile chromo-baths by spent mushroom substrate from the industrial cultivation of Pleurotus ostreatus, J. Environ. Protec., 2010, vol. 1, pp. 85–94.CrossRefGoogle Scholar
  22. 22.
    Ramya, M., Lyappan, S., Manju, A., and Jiffe, J.S., Biodegradation and Decolorization of Acid Red by Acinetobacter radioresistens, J. Bioremed. Biodegr., 2010, vol. 1, p. 105.Google Scholar
  23. 23.
    Kurade, M.B., Waghmode, T.R., and Govindwar, S.P., Preferential biodegradation of structurally dissimilar dyes from a mixture by Brevibacillus laterosporus, J. Hazard. Mater., 2011, vol. 192, pp. 1746–1755.PubMedCrossRefGoogle Scholar
  24. 24.
    Pilatin, S. and Kunduhoǧlu, B., Decolorization of textile dyes by newly isolated Trametes versicolar strain, Life. Sci. Biotechnol., 2011, no. 1, pp. 125–135.Google Scholar
  25. 25.
    Pratum, C., Wongthanate, J., Arunlertaree, C., and Prapagdee, B., Decolorization of reactive dyes and textile dyeing effluent by Pleurotus sajor-cajo, Int. J. Integr. Biol., 2011, vol. 11, pp. 52–57.Google Scholar
  26. 26.
    Yang, Q., Yediler, A., Yang, M., and Kettrup, A., Decolorization of an azo dye, Reactive Black 5 and MnP production by yeast isolate: Debaryomyces polymorphus, Biochem. Eng. J., 2005, vol. 24, pp. 249–253.CrossRefGoogle Scholar
  27. 27.
    Yu, Z. and Wen, X., Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater, Int. Biodeter. Biodegr., 2005, vol. 5, pp. 109–114.CrossRefGoogle Scholar
  28. 28.
    Kakuta, T., Tateno, Y., Koizumi, T., Kodama, K., Yoshizawa, K., and Nojiro, K., Azo dye wastewater treatment with immobilized yeast, J. Soc. Ferment. Technol., 1992, vol. 70, pp. 387–393.Google Scholar
  29. 29.
    Kim, S.J., Ishikawa, K., Hirai, M., and Shoda, M., Characteristics of a newly isolated fungus, Geotrichum candidum Dec1, which decolorizes various dyes, J. Ferment. Bioeng., 1995, vol. 79, pp. 601–607.CrossRefGoogle Scholar
  30. 30.
    Martins, M.A.M., Cardoso, M.H., Queiroz, M.J., Ramalho, M.T., and Campos, A.M.O., Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures, Chemosphere, 1999, vol. 38, pp. 2455–2460.PubMedCrossRefGoogle Scholar
  31. 31.
    Ramalho, P.A., Cardoso, M.H., Cavaco-Paulo, A., and Ramalho, M.T., Characterization of azo reduction activity in a novel ascomycete yeast strain, Appl. Environ. Microbiol., 2004, vol. 70, pp. 2279–2288.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lucas, M.S., Amaral, C., Sampaio, A., Peres, J.A., and Dias, A.A., Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila, Enzyme. Microb. Technol., 2006, vol. 39, pp. 51–55.CrossRefGoogle Scholar
  33. 33.
    Jadhav, S.U., Kalme, S.D., and Govindwar, S.P., Biodegradation of methyl red by Galactomyces geotrichum MTCC 1360, Int. Biodeter. Biodegr., 2008, vol. 62, pp. 135–142.CrossRefGoogle Scholar
  34. 34.
    Jafari, N., Soudi, M.R., and Kasra-Kermanshahi, R., Biodecolorization of textile azo dyes by isolated yeast from activated sludge: Issatchenkia orientalis JKS6, Ann. Microbiol., 2014, Vol. 64, pp. 475–482.CrossRefGoogle Scholar
  35. 35.
    Martorell, M.M., Pajot, H.F., and de Figueroa, L.I.C., Dye-decolourizing yeasts isolated from Las Yungas rainforest. Dye assimilation and removal used as selection criteria, Int. Biodeter. Biodegr., 2012a, vol. 66, pp. 25–32.CrossRefGoogle Scholar
  36. 36.
    Verma, P. and Madamvar, D., Decolorization of azo dyes using Basidiomycete strain PV 002, World. J. Microbiol. Biotechnol., 2005, vol. 21, pp. 481–485.CrossRefGoogle Scholar
  37. 37.
    Pajot, H.F., de Figueroa, L.I.C., and Fariña, J.I., Dyedecolorizing activity in isolated yeasts from the ecoregion of Las Yungas (Tucumán, Argentina), Enzyme Microb. Technol., 2007, vol. 40, pp. 1503–1511.CrossRefGoogle Scholar
  38. 38.
    Pajot, H.F., Figueroa, L.I.C., Spencer, J.F.T., and Fariña, J.I., Phenotypical and genetic characterization of Trichosporon sp. HP-2023 a yeast isolate from Las Yungas rainforest (Tucumán, Argentina) with azo-dye-decolorizing ability, Antonie. Van. Leeuwenhoek, 2008, vol. 94, pp. 233–244.PubMedCrossRefGoogle Scholar
  39. 39.
    Waghmode, T.R., Kurade, M.B., and Govindwar, S.P., Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360, Int. Biodeter. Biodegr., 2011, vol. 65, pp. 479–486.CrossRefGoogle Scholar
  40. 40.
    Ramalho, P.A., Paiva, S., Cavaco-Paulo, A., Casal, M., Cardoso, M.H., and Ramalho, M.T., Azo reductase activity of intact Saccharomyces cerevisiae cells is dependent on the Fre 1p component of plasma membrane ferric reductase, Appl. Environ. Microbiol., 2005, vol. 71, pp. 3882–3888.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ramalho, P.A., Scholze, H., Cardoso, M.H., Ramalho, M.T., and Oliveira-Campos, A.M., Improved conditions for the aerobic reductive decolorization of azo dyes by Candida zeylanoides, Enzyme. Microb. Technol., 2002, vol. 31, pp. 848–854.CrossRefGoogle Scholar
  42. 42.
    Yang, Q., Tao, L., Yang, M., and Zhang, H., Effects of glucose on the decolorization of Reactive Black 5 by yeast isolates, J. Environ. Sci., 2008, vol. 20, pp. 105–108.CrossRefGoogle Scholar
  43. 43.
    Swamy, J. and Ramsay, J.A., Effects of glucose and concentrations on sequential dye decolorization by Trametes versicolor, Enzyme. Microb. Technol., 1999, vol. 25, pp. 278–284.CrossRefGoogle Scholar
  44. 44.
    Pérez-Díaz, I.M. and McFeeters, R.F., Modification of azo dyes by lactic acid bacteria, J. Appl. Microbiol., 2009, vol. 107, pp. 584–589.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang, H., Zheng, X.W., Su, J.Q., Tian, Y., Xiong, X.J., and Zheng, T.L., Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3, J. Hazard. Mater., 2009, vol. 171, pp. 654–659.PubMedCrossRefGoogle Scholar
  46. 46.
    Bayoumi, R.A., Musa, S.M., Bahobil, A.S., and E1-Sakawey, T.A., Biodecolorization and Biodegradation of azo dyes by some bacterial isolates, J. Appl. Environ. Biol. Sci., 2010, vol., pp. 1–25.Google Scholar
  47. 47.
    Parshetti, G.K., Kalme, S.D., Gomare, S.S., and Govindwar, S.P., Biodegradation of Reactive blue-25 by Aspergillus ochraceus NCIM-1146, Biores. Technol., 2007, vol. 98, pp. 3638–3642.CrossRefGoogle Scholar
  48. 48.
    Paszczynski, A., Pasti, M.B., Goszczynski, S., Crawford, D.L., and Crawford, R.L., New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium, Enzyme. Microbiol. Technol., 1991, vol. 13, pp. 378–384.CrossRefGoogle Scholar
  49. 49.
    Paszczynski, A., Pasti, M.B., Goszczynski, S., Crawford, R.L., and Crawford, D.L., Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus, Appl. Environ. Microbiol., 1992, vol. 58, pp. 3598–3604.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Chagas, E.P. and Durrant, L.R., Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju, Enzyme Microb. Technol., 2001, vol. 29, pp. 473–477.CrossRefGoogle Scholar
  51. 51.
    Brown, M.A. and De Vito, S.C., Predicting azo dye toxicity, Crit. Rev. Environ. Sci. Technol., 1993, vol. 23, pp. 249–324.CrossRefGoogle Scholar
  52. 52.
    Telke, A.A., Joshi, S.M., Jadhav, S.U., Tamboli, D.P., and Govindwar, S.P., Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU.EBT, Biodegradation, 2010, vol. 21, pp. 283–296.PubMedCrossRefGoogle Scholar
  53. 53.
    Vandevivere, P.C., Bianchi, R., and Verstraete, W., Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies, J. Chem. Technol. Biotechnol., 1998, vol. 72, pp. 289–302.CrossRefGoogle Scholar
  54. 54.
    Suryaman, D., Hasegawa, K., and Kagaya, S., Combined biological and photocatalytic treatment for the mineralization of phenol in water, Chemosphere, 2006, vol. 65, pp. 2502–2506.PubMedCrossRefGoogle Scholar
  55. 55.
    Genç, N., Photocatalytic oxidation of a reactive azo dye and evaluation of the biodegradability of photocatalytically treated and untreated dye, Water SA., 2004, vol. 30, pp. 399–405.CrossRefGoogle Scholar
  56. 56.
    Sudarjanto, G., Keller-Lehmann, B., and Keller, J., Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology, J. Hazard. Mater, 2006, vol. B138, pp. 160–168.CrossRefGoogle Scholar
  57. 57.
    Feng, F., Xu, Z., Li, X., You, W., and Zhen, Y., Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process, J. Environ. Sci., 2010, vol. 22, pp. 1657–1665.CrossRefGoogle Scholar
  58. 58.
    Balcioglu, I.A. and Cecen, F., Treatability of kraft pulp bleaching wastewater by biochemical and photocatalytic oxidation, Wat. Sci. Technol., 1999, vol. 40, pp. 281–288.CrossRefGoogle Scholar
  59. 59.
    González, L.F., Sarria, V., and Sánchez, O.F., Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV, Biores. Technol., 2010, vol. 101, pp. 3493–3499.CrossRefGoogle Scholar
  60. 60.
    Jafari, N., Kasra-Kermanshahi, R., Soudi, M.R., Mahvi, A.H., and Gharavi, S., Degradation of a textile reactive azo dye by a combined biological-photocatalytic process: Candida tropicalis JKS2, TiO2/UV, Iran. J. Environ. Health. Sci. Eng., 2012, vol. 9, p. 33.CrossRefGoogle Scholar
  61. 61.
    Libra, J.A., Borchert, M., Vigelahn, L., and Storm, T., Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites, Chemosphere, 2004, vol. 56, pp. 167–180.PubMedCrossRefGoogle Scholar
  62. 62.
    Supaka, N., Juntongjin, K., Damronglerd, S., Delia, M.L., and Strehaiano, P., Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system, Chem. Eng. J., 2004, vol. 99, pp. 169–176.CrossRefGoogle Scholar
  63. 63.
    Franciscon, E., Zille, A., Frantinatti-Garboggini, F., Silva, I.S., Cavaco-Paulo, A., and Durrant, L.R., Microaerophilic-aerobic sequential decolorization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31, Process. Biochem., 2009, vol. 44, pp. 446–452.CrossRefGoogle Scholar
  64. 64.
    Waghmode, T.R., Kurade, M.B., Khandare, R.V., and Govindwar, S.P., A sequential aerobic/microaerophilic decolorization of sulfonated mono azo dye Golden Yellow HER by microbial consortium GG-BL, Int. Biodeter. Biodegr., 2011b vol. 65, pp. 1024–1034.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Narjes Jafari
    • 1
    • 2
    Email author
  • Mohammad Reza Soudi
    • 3
  • Rouha Kasra-Kermanshahi
    • 1
  1. 1.Department of Biology, Faculty of ScienceAlzahra UniversityTehranIran
  2. 2.Mazandaran University of Medical SciencesSariIran
  3. 3.National Laboratory of Industrial Microbiology, Department of Biology, Faculty of ScienceAlzahra UniversityTehranIran

Personalised recommendations