, Volume 83, Issue 5, pp 599–607 | Cite as

Study of enhancement and inhibition phenomena and genes relating to degradation of petroleum polycyclic aromatic hydrocarbons in isolated bacteria

  • Abd El-Latif HeshamEmail author
  • Asmaa M. M. Mawad
  • Yasser M. Mostafa
  • Ahmed ShoreitEmail author
Experimental Articles


Polycyclic aromatic hydrocarbons (PAHs) are xenobiotic compounds, which being degraded by chemical, physical or biological methods. The latter is the safest and the cheapest one. Two bacterial strains ASU-01 and ASU-016 were isolated from different Egyptian petroleum contaminated sites. They were genetically identified based on the analysis of the nucleotide sequences of the 16S ribosomal PNA gene and the phylogenetic tree as Enterobacter hormaechei and Pseudomonas pseudoalcaligenes respectively. When pyrene as high molecular weight (HMW)-PAH was added as a sole carbon source, both strains could degrade it with efficiency 77.7 and 83.7% within 15 days of incubation, respectively. However, when it was mixed with low molecular weight (LMW)-PAHs, two opposite phenomena appeared. The first one was enhancement, which occurred with ASU-01. This strain shifted pyrene efficiency to 98.5%. The second phenomenon was inhibition occurred with ASU-016 which completely retarded pyrene degradation. Naphthalene dioxygenase (nahAc), and catechol dioxygenases (C12O and C23O) genes were detected in the two strains based on PCR. The detected genes were confirmed by determining the different specific activities of their translated protein (enzymes) on different PAHs. The maximum values of biosurfacatant production activity and cell-surface and percentage of cell-surface hydrophobicity (CSH) were detected during the exponential phase. These latter factors increased the bioavailability and consequently, the assimilation of PAHs.


biodegradation PAHs bacteria enhancement and inhibition phenomena hydrophobicity 16S rRNA gene sequences catabolic genes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haritash, A.K. and Kaushik, C.P., Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs), J. Hazard. Mater., 2009, vol. 169, pp. 1–15.PubMedCrossRefGoogle Scholar
  2. 2.
    Benzo[a]pyrene, Polynuclear Aromatic Compounds, Part1, Chemical, Environmental and Experimental Data, Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, International Agency for Research on Cancer (IARC), 1983, vol. 32, pp. 211–224.Google Scholar
  3. 3.
    Yuan, S.Y., Chang, J.S., Yen, J.H., and Chang, B.V., Biodegradation of phenanthrene in river sediment, Chemosphere, 2001, vol. 43, pp. 273–278.PubMedCrossRefGoogle Scholar
  4. 4.
    El-Naas, M.H., Al-Muhtaseb, S.A., and Makhlouf, S., Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel, J. Hazard. Mater., 2009, vol. 16, pp. 720–725.CrossRefGoogle Scholar
  5. 5.
    Arulazhagan, P., Vasudevan, N., and Yeom, I.T., Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment, Int. J. Environ. Sci. Tech., 2010, vol. 7, pp. 639–652.CrossRefGoogle Scholar
  6. 6.
    Onruthai, P., Hiroshi, H., Atsushi, K., Hideaki, N., Hisakazu, Y., and Toshio, O., Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4, FEMS Microbiol. Lett., 2004, vol. 238, pp. 297–305.Google Scholar
  7. 7.
    Meuller, J.G., Chapman, P.J., and Pritchard, P.H., Action of fluoranthene-utilizing community on polycyclic aromatic hydrocarbon components of creosote, Appl. Environ. Microbiol., 1989, vol. 55, no.12, pp. 3085–3090.Google Scholar
  8. 8.
    Hesham, A., Wang, Z., Zhang, Y., Zhang, J., Lv, W., and Yang, M., Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons, Ann. Microbiol., 2006, vol. 56, pp. 109–112.CrossRefGoogle Scholar
  9. 9.
    Hesham, A., New Safety and Rapid Method for Extraction of Genomic DNA from Bacteria and Yeast Strains Suitable for PCR Amplifications, J. Pure Appl. Microbiol., 2014, vol. 8, no. 1, pp. 383–388.Google Scholar
  10. 10.
    Hesham, A., Khan, S., Tao, Y., Li, D., and Yang, M., Biodegradation of high molecular weight PAHs using isolated yeast mixtures: application of meta-genomic methods for community structure analyses, Environ. Sci. Pollut. Res., 2012, vol. 19, no. 8, pp. 3568–3578.CrossRefGoogle Scholar
  11. 11.
    Guo, C., Dang, Z., Wong, Y., and Tam, N., Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments, Int. Biodeter. Biodegrad., 2010, vol. 64, pp. 419–426.CrossRefGoogle Scholar
  12. 12.
    Manohar, S., Kim, C.K., and Karegoudar, T.B., Degradation of anthracene by a Pseudomonas strain, NGK1, J. Microbiol., 1999, vol. 37, pp. 73–79.Google Scholar
  13. 13.
    Bishnoi, K., Kumar, R., and Bishnoi, N.R., Biodegradation of polycyclic aromatic hydrocarbon by white rot fungi Phaneorochaete chrysosporium in sterile and unsterile soil, J. Sci. Environ. Res., 2008, vol. 67, pp. 538–542.Google Scholar
  14. 14.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  15. 15.
    Dagher, F., Déziel, E., and Lirette, P., Comparative study of five polycyclic aromatic hydrocarbons degrading bacterial strains isolated from contaminated soils, Can. J. Microbiol., 1997, vol. 43, pp. 368–377.PubMedCrossRefGoogle Scholar
  16. 16.
    Ornston L.N., and Stanier R.Y., The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida, J. Biol. Chem., 1966, vol. 241, pp. 3776–3786.PubMedGoogle Scholar
  17. 17.
    Laurie, A.D. and Lloyd-Jones, G., Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1814–1817.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sei, K., Asano, K.I., Tateishi, N., Mori, K., Ike, M., and Fujita M., Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways, J. Biosci. Bioeng., 1999, vol. 88, pp. 542–550.PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer, S., Moser, R., Neef, A., Stah, U., and Kampfer, P., Differential detection of key enzymes of polyaromatic hydrocarbon-degrading bacteria using PCR and gene probes, Microbiology (UK), 1999, vol. 145, pp. 1731–1741.CrossRefGoogle Scholar
  20. 20.
    Phale, P.S., Savithri, H.S., Rao, N.A., and Vaidyanathan, C.S., Production of biosurfactant “Biosur-Pm” by Pseudomonas maltophilia CSV89: characterization and role in hydrocarbon uptake, Arch. Microbiol., 1995, vol. 163, pp. 424–431.Google Scholar
  21. 21.
    Rosenberg, M. and Rosenberg, E., Bacterial adherence at the hydrocarbon-water interface, Oil Petrochem. Pollut., 1985, vol. 2, pp. 155–162.CrossRefGoogle Scholar
  22. 22.
    Prabhu, Y. and Phale, P., Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation, Appl. Microbiol. Biotechnol., 2003, vol. 61, pp. 342–351.PubMedCrossRefGoogle Scholar
  23. 23.
    Gordon, L. and Dobson, A.D.W., Fluoranthene degradation in Pseudomonas alcaligenes PA-10, Biodegradation, 2001, vol. 12, pp. 393–400.PubMedCrossRefGoogle Scholar
  24. 24.
    Erdoǧan, E. E., Sahin, F., and Karac, A., Determination of petroleum-degrading bacteria isolated from crude oil-contaminated soil in Turkey, Afr. J. Biotechnol., 2012, vol. 11, pp. 4853–4859.Google Scholar
  25. 25.
    Ensley, B.D., Ratzkin B.J., Osslund T.D., Simon, M.J., Wackett, L.P., and Gibson, D.T., Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo, Science, 1983, vol. 222, pp. 167–169.PubMedCrossRefGoogle Scholar
  26. 26.
    Bouchez, M., Blanchet, D., and Vandecasteele, J.P., Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism, Appl. Microbiol. Biotechnol., 1995, vol. 43, pp. 156–164.PubMedCrossRefGoogle Scholar
  27. 27.
    Lu, X., Zhang, T., Fang, H.H., Leung, K., and Zhang, G., Biodegradation of naphthalene by enriched marine denitrifying bacteria, Int. Biodeterior. Biodegrad., 2011, vol. 65, pp. 204–211.CrossRefGoogle Scholar
  28. 28.
    Barbieri, P., Palladino L., Di-Gennaro, P., and Gatli, E., Alternative pathways for o-xylene or m-xylene and p-xylene degradation in a Pseudomonas stutzeri strain, Biodegradation, 1993, vol. 4, pp. 71–80.CrossRefGoogle Scholar
  29. 29.
    Liu, J., Curry, J.A., Rossow, W.B., Key, J.R., and Wang, X., Comparison of surface radiative flux data sets over the Arctic Ocean, J. Geophys. Res., 2005, vol. 110, pp. 1–13.Google Scholar
  30. 30.
    Lloyd Jones, G., Laurie, A.D., Hunter, D.W.F., and Fraser, R., Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils, FEMS Microbiol. Ecol., 1999, vol. 29, pp. 69–79.CrossRefGoogle Scholar
  31. 31.
    Ferrero, M., Llobet-Brossa, E., Lalucat, J., Garcia-Valdes, E. et al., Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region, Appl. Environ. Microbiol., 2002, vol. 68, pp. 957–962.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Cébron, A., Norini, M.P., Beguiristain T., and Leyval, C., Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from gram-positive and gram-negative bacteria in soil and sediment samples, J. Microbiol. Methods, 2008, vol. 73, pp. 148–159.PubMedCrossRefGoogle Scholar
  33. 33.
    Dimitriou-Christidis, P., Autenrieth, R.L., McDonald, T.J., and Desai, A.M., Measurement of biodegradeability parameters for single unsubstituted and methylated polycyclic aromatic hydrocarbons in liquid bacterial suspensions, Biotechnol. Bioengineer., 2007, vol. 97, pp. 922–932.CrossRefGoogle Scholar
  34. 34.
    Hwang, G., Park, S.R., Lee, C., Ahna, I., Yoon, Y., and Mhin, B.J., Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB9816-4 to a naphthalene-contaminated soil, J. Hazard. Mater., 2009, vol. 172, pp. 491–493.PubMedCrossRefGoogle Scholar
  35. 35.
    Benbatla, S., Isolation of biosurfactants producing bacteria from oil contaminated soils, November Boumerdes 35000 Alger, 1995, pp. 289–294.Google Scholar
  36. 36.
    Kolomytseva, M.P., Baskunov, B.P., and Golovleva, L.A., Intradiol pathway of p-cresol conversion by Rhodococcus opacus 1CP, J. Biotechnol., 2007, vol. 2, pp. 886–889.CrossRefGoogle Scholar
  37. 37.
    Juhasz, A.L., Stanley, G.A., and Britz, M.L., Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomona smalltophilia strain VUN10,003, Lett. Appl. Microbiol., 2000, vol. 30, pp. 396–401.PubMedCrossRefGoogle Scholar
  38. 38.
    Gennarob, P.D., Morenoa, B., Annoni, E., García-Rodríguez, S., Bestetti, G., and Benitez, E., Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompostamended PAH-contaminated soils, J. Hazard. Mater., 2009, vol. 172, pp. 1464–1469.CrossRefGoogle Scholar
  39. 39.
    Deveryshetty, J., and Phale, P.S., Biodegradation of phenanthrene by Pseudomonas sp. strain PPD: purification and characterization of 1-hydroxy-2-naphthoic acid dioxygenase, Microbiology (UK), 2009, vol. 155, pp. 3083–3091.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Genetics Department, Faculty of AgricultureAssiut UniversityAssiutEgypt
  2. 2.Botany and Microbiology department, Faculty of ScienceAssiut universityAssiutEgypt
  3. 3.Egyptian Petroleum Research InstituteNasr city, CairoEgypt

Personalised recommendations