, Volume 83, Issue 4, pp 344–351 | Cite as

Changes in growth patterns and intracellular calcium concentrations in Aspergillus awamori treated with amphotericin B

  • A. A. Abd El-Rahman
  • O. V. Kozlova
  • S. M. A. El-Shafei
  • F. K. Alimova
  • F. G. Kupriyanova-Ashina
Experimental Articles


Growth patterns and intracellular Ca2+ concentrations in the mutant strain Aspergillus awamori 66A containing a recombinant aequorin gene were studied in the presence of a permeabilizing fungicidal agent amphotericin B. The cell response, i.e., changes in the growth and development of the fungus (initiation of spore germination, mycelial growth, and intensity of sporulation) was dose-dependent. Low concentrations of amphotericin B (2.5 μM) stimulated spore germination: the number of germinating spores was 2–3 times higher than in the control (without the fungicide). At higher amphotericin concentrations (20 μM) spore germination was inhibited. Amphotericin B had a dose-dependent effect on mycelial growth and sporulation intensity on solid Vogel medium. Intracellular Ca2+ concentrations in the presence of amphotericin B were investigated using the luminescence of the photoprotein aequorin. High concentrations of amphotericin B (10 and 20 μM) were shown to cause an instantaneous increase in Ca2+ concentrations compared to the control and lower amphotericin concentration (2.5 μM). Ca2+ concentrations remained elevated throughout the experiment and correlated with the inhibition of mycelial growth and development.


Aspergillus awamori recombinant aequorin permeabilizing fungicide amphotericin B cell response sporulation Ca2+ signaling Ca2+ dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markovich, N.A. and Kononova, G.L., Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review, Appl. Biochem. Microbiol., 2003, vol. 39, no. 4, p. 341–351.CrossRefGoogle Scholar
  2. 2.
    Monastyrskii, O.A., Toxins of phytopathogenic fungi, Zashch. Rast., 1996, no. 8, pp. 12–14.Google Scholar
  3. 3.
    Chryssanthou, E., Loebig, A., and Sjolin, J., Post-antifungal effect of amphotericin B and voriconazole against germinated Aspergillus fumigatus conidia, J. Antimicrob. Chemotherapy, 2008, vol. 61, pp. 1309–1311.CrossRefGoogle Scholar
  4. 4.
    Johnson, E.M., Oakley, K.L., Radford, S.A., Moore, C.B., Warn, P., Warnock, D.W., and Genning, D.W., Lack of correlation of in vitro amphotericin B susceptibility testing with outcome in a murine model of Aspergillus infection, J. Antimicrob. Chemother., 2000, vol. 45, pp. 85–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Meletiadis, J., Al-Saigh, R., Velegraki, A., Walsh, T.S., Roilides, E., and Zerva, L., Pharmacodynamic effects of stimulated standard doses of antifugal drug against Aspergillus species in a new in vitro pharmacokinetic/pharmacodynamic model, J. Antimicrob. Chemother., 2012, vol. 56, pp. 403–410.CrossRefGoogle Scholar
  6. 6.
    Kasumov, Kh.M., Modern concepts on the mechanism of action of polyene antibiotics—interrelation between structure and function, Antibiotiki, 1981, vol. 26, no. 2, pp. 143–155.PubMedGoogle Scholar
  7. 7.
    Samedova, A.A. and Kasumov, Kh.M., The relationship between the structure and function of polyene antibiotics as physiologically active substances, Eastern Med. J., 1998, vol. 3, nos. 1–2.Google Scholar
  8. 8.
    Cerella, C., Diederich, M., and Ghibelli, L., The dual role of calcium as messenger and stressor in cell damage, death, and survival, Int. J. Cell Biol., 2010, article ID546163. DOI: 10.1155/2010/546163Google Scholar
  9. 9.
    Medvedev, S.S., Calcium signaling system in plants, Russ. J. Plant Physiol., 2005, vol. 52, no. 2, pp. 249–270.CrossRefGoogle Scholar
  10. 10.
    Deryabina, Yu.I., Bazhenova, E.N., and Zvyagil’skaya, R.A., The Ca2+ transport system of yeast (Endomyces magnusii) mitochondria: independent pathways for Ca2+ uptake and release, Biochemistry (Moscow), 2000, vol. 65, no. 12, pp. 1352–1356.CrossRefGoogle Scholar
  11. 11.
    Kajitani, N., Kobuchi, H., Fujita, H., Yano, H., Fujiwara, T., Yasuda, T., and Utsumi, K., Mechanism of A23187-induced apoptosis in HL-60 cells: dependency on mitochondrial permeability trannsition but not on NADPH oxidase, Boisci. Biotechnol. Biochem., 2007, vol. 71, no. 11, pp. 2701–2711.CrossRefGoogle Scholar
  12. 12.
    Bras, M., Queenan, B., and Susin, S.A., Programmed cell death via mitochondria: different modes of dying, Biochemistry (Moscow), 2005, vol. 70, no. 2, pp. 231–239.CrossRefGoogle Scholar
  13. 13.
    Nelson, G., Kozlova-Zwinderman, O., Kollis, A.G., Knight, M.R., Fincham, J.R.S., Stanger, C.R., Renwick, A., Hessing, J.G.M., Punt, P.J., van den Hondel, C.A.M.J.J., and Read N.D., Calcium measurement in living filamentous fungi expressing codonoptimized aequorin, Mol. Microbiol., 2004, vol. 52, pp. 1437–1450.PubMedCrossRefGoogle Scholar
  14. 14.
    Vogel, H.J., A convenient growth medium for Neurospora (medium N), Microb. Gen. Bull., 1956, vol. 51, pp. 107–124.Google Scholar
  15. 15.
    Bilai, V.I., Determination of fungal growth and biosynthetic activity, in Metody eksperimental’noi mikologii (Methods for Experimental Mycology), Kiev: Naukova dumka, 1982, pp. 138–152.Google Scholar
  16. 16.
    Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J., Recombinant aequorin as a probe for cytosolic free Ca2+ in Escherichia coli, FEBS Lett., 1991, vol. 282, pp. 408–412.CrossRefGoogle Scholar
  17. 17.
    Kozlova, O.V., Egorov, S.Yu., Kupriyanova-Ashina, F.G., Nik, R., and El-Registan, G.I., Analysis of the Ca2+ response of mycelial fungi to external effects by the recombinant aequorin method, Microbiology (Moscow), 2004, vol. 73, no. 6, pp. 629–634.CrossRefGoogle Scholar
  18. 18.
    Barabas, G. and Szabo, G., Effect of penicillin on streptomycin production by Streptomyces griseus, J. Antimicrob. Chemother., 1977, vol. 11, pp. 392–395.CrossRefGoogle Scholar
  19. 19.
    Saris, N.E.L. and Carafoli, E.A., Historical review of cellular calcium handling, with emphasis on mitochondria, Biochemistry (Moscow), 2005, vol. 70, no. 2, pp. 187–194.CrossRefGoogle Scholar
  20. 20.
    El-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75, no. 4, pp. 380–389.CrossRefGoogle Scholar
  21. 21.
    Il’inskaya, O.N., Kolpakov, A.I., Shmidt, M.A., Doroshenko, E.V., Mulyukin, A.L., and El’-Registan, G.I., The role of bacterial growth autoregulators (alkyl hydroxybenzenes) in the response of staphylococci to stresses, Microbiology (Moscow), 2002, vol. 71, no. 1, pp. 18–23.CrossRefGoogle Scholar
  22. 22.
    Kozlova, O.V., Kupriyanova-Ashina, F.G., Egorov, S.Yu., and El-Registan, G.I., Effect of a chemical analogue of autoinducers of microbial anabiosis on the Ca2+ response of mycelial fungi, Microbiology (Moscow), 2004, vol. 73, no. 6, pp. 635–642.CrossRefGoogle Scholar
  23. 23.
    Golod, N.A., Loiko, N.G., Lobanov, K.V., Mironov, A.S., Voieikova, T.A., Galchenko, V.F., Nikolaev, Yu.A., and El-Registan, G.I., Involvement of alkylhydroxybenzenes, microbial autoregulators, in controlling the expression of stress regulons, Microbiology (Moscow), 2009, vol. 78, no. 6, pp. 678–688.CrossRefGoogle Scholar
  24. 24.
    Nikolaev, Yu.A., Mulyukin, A.L., Stepanenko, I.Yu., and El-Registan, G.I., Autoregulation of stress response in microorganisms, Microbiology (Moscow), 2006, vol. 7, no. 4, pp. 420–426.CrossRefGoogle Scholar
  25. 25.
    Samedova, A.A., Kasumov, Kh.M., and Sultanova, G.G., Mechanism of action of filipin, a polyene membrane-active antibiotic, and biochemical aspects of its investigation on cell membranes, Usp. Sovr. Estestvoznan., 2008, no. 9, pp. 99–100.Google Scholar
  26. 26.
    Gadd, G.M., Signal transduction in fungi, in The Growing Fungus, Gow, N.A.R. and Gad, G.M., Eds., London: Chapman & Hall, 1995, pp. 183–210.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. Abd El-Rahman
    • 1
  • O. V. Kozlova
    • 2
  • S. M. A. El-Shafei
    • 1
  • F. K. Alimova
    • 3
  • F. G. Kupriyanova-Ashina
    • 3
  1. 1.Department of Agricultural Chemistry, Faculty of AgricultureMinia UniversityEl-MiniaEgypt
  2. 2.Institute of Cell and Molecular BiologyUniversity of EdinburghEdinburghUK
  3. 3.Kazan (Volga region) Federal UniversityKazanRussia

Personalised recommendations