Microbiology

, Volume 83, Issue 1–2, pp 140–148 | Cite as

Investigating the role of dicer 2 (dcr2) in gene silencing and the regulation of mycoviruses in Botrytis cinerea

Experimental Articles

Abstract

Botrytis cinerea, the fungus causing gray mould disease, is usually controlled by cultural and chemical methods. It would be interesting to see if mycoviruses were a feasible method for reducing fungal virulence thus controlling the disease, but first more has to be understood of the RNA silencing mechanism and whether mycoviruses can combat such defences. Analysis of the B. cinerea genome data identified two Dicer genes: dcr1 and dcr2. In other fungi, mutation or deletion of dcr2 usually leads to impaired gene silencing. Targeted gene disruption created two independent B. cinerea Δdcr2 mutants in a ku70 background. When the Δdcr2 mutants were transformed with an argininosuccinate synthetase (bcass1) silencing cassette, many of these transformants displayed arginine auxotrophy, suggesting that silencing was still functional in a Δdcr2 mutant. Transfection of the wild-type and dcr2-disrupted B. cinerea lines with Botrytis virus F (BVF) gave no readily detectable alteration in fungal growth rate or virulence. Expression of dcr2, but not dcr1, was suppressed in the wild-type at 7 days post infection with BVF, whereas in a Δdcr2 mutant, dcr1 expression was suppressed. By 28 days post BVF-infection, dcr1 and dcr2 were expressed to the elevated levels typically observed when gene silencing is induced. This shows that whilst dcr2 is not essential for gene silencing or for controlling mycovirus such as BVF, it would appear that the mycovirus BVF is able to suppress the normal expression of genes involved in the silencing pathway, at least during early stages of infection of B. cinerea.

Keywords

gene-silencing mycovirus Botrytis cinerea dicer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williamson, B., Tudzynski, B., Tudzynski, P., and van Kan, J.A.L., Botrytis cinerea: the cause of grey mould disease, Mol. Plant Pathol., 2007, vol. 8, pp. 561–580.PubMedCrossRefGoogle Scholar
  2. 2.
    Shtienberg, D. and Elad, Y., Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea, Phytopathol., 1997, vol. 87, pp. 332–440.CrossRefGoogle Scholar
  3. 3.
    Dawe, A.L. and Nuss, D.L., Hypoviruses and Chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis, Annu. Rev. Genet., 2001, vol. 35, pp. 1–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Pearson, M.N., Beever, R.E., Boine, B., and Arthur, K., Mycoviruses of filamentous fungi and their relevance to plant pathology, Mol. Plant Pathol., 2009, vol. 10, pp. 115–128.PubMedCrossRefGoogle Scholar
  5. 5.
    Plasterk, R.H. and Ketting, R.F., The silence of the genes, Curr. Opin. Genetic Dev., 2000, vol. 10, pp. 562–567.CrossRefGoogle Scholar
  6. 6.
    Lee, H.-C., Aalto, A.P., Yang, Q., Chang, S.-S., Huang, G., Fisher, D., Cha, J., Poranen, M.M., Bamford, D.H. and Liu, Y., The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase, PLoS Biol., 2010, 8:e1000496.Google Scholar
  7. 7.
    Segers, G.C., Zhang, X., Deng, F., Sun, Q., and Nuss, D.L., Evidence that RNA silencing functions as an antiviral defence mechanism in fungi, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 12902–12906.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Chapman, E.J., Prokhnevsky, A.I., Gopinath, K., Dolja, K., and Carrington, J.C., Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step, Genes Dev., 2004, vol. 18, pp. 1179–1189.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    González, I., Martínez, L., Rakitina, D.V., Lewsey, M.G., Atencio, F.A., Llave, C., Kalinina N.O., Carr, J.P., Palukaitis, P., and Canto, T., Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity, Mol. Plant Microbe Interact., 2010, vol. 23, pp. 294–303.PubMedCrossRefGoogle Scholar
  10. 10.
    Goto, K., Kobori, T., Kosaka, Y., Natsuaki, T., and Masuta, C., Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small-binding abilities, Plant Cell Physiol., 2007, vol. 48, pp. 1050–1060.PubMedCrossRefGoogle Scholar
  11. 11.
    Hammond, T.M., Andrewski, M.D., Roossink, M.J., and Keller, N.P., Aspergillus mycoviruses are targets and suppressors of RNA silencing, Eukaryotic Cell, 2008, vol. 7, pp. 350–357.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Howitt, R.L.J., Beever, R.E., Pearson, M.N., and Forster, R.L.S., Presence of double-stranded RNA and virus-like particles in Botrytis cinerea, Mycol. Res., 1995, vol. 99, pp. 1472–1478.CrossRefGoogle Scholar
  13. 13.
    Howitt, R.L.J., Beever, R.E., Pearson, M.N., and Forster, R.L.S., Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant “potex-like” viruses, J. Gen. Virol., 2001, vol. 88, pp. 67–78.Google Scholar
  14. 14.
    Pearson, M.P. and Bailey, A.M., Viruses of Botrytis, Adv. Virus Res., 2013, vol. 86, pp. 249–272.PubMedCrossRefGoogle Scholar
  15. 15.
    Kadotani, N., Nakayashiki, H., Tosa, Y., and Mayama, S., One of the two dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation, J. Biol. Chem., 2004, vol. 279, pp. 44467–44474.PubMedCrossRefGoogle Scholar
  16. 16.
    Catalanotto, C., Pallotta, M., ReFalo, P., Sachs, M.S., Vayssie, L., Macino, G., and Cogoni, C., Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa, Mol. Cell Biol., 2004, vol. 24, pp. 2536–2545.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Patel, R.M., van Kan, J.A.L., Bailey, A.M., and Foster, G.D., RNA mediated gene silencing of superoxide dismutase (bcsod1) in Botrytis cinerea, Phytopathol., 2008, vol. 98, pp. 1334–1339.CrossRefGoogle Scholar
  18. 18.
    Patel, R.M., van Kan, J.A.L., Bailey, A.M., and Foster, G.D., Inadvertent gene silencing of argininosuccinate synthase (bcass1) in Botrytis cinerea by the pLOB1 vector system, Mol. Plant Pathol., 2010, vol. 11, pp. 613–624.PubMedGoogle Scholar
  19. 19.
    Büttner, P., Koch, F., Voigt, K., Quidde, T., Risch, T., Blaich, R., Brückner, B., and Tudzynski, P., Variations on ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analysis, Curr. Genet., 1994, vol. 25, pp. 445–450.PubMedCrossRefGoogle Scholar
  20. 20.
    Choquer, M., Robin, G., Le Pecheur, P., Giraud, C., Levis, C., and Viaud, M., Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild type context, FEMS Microbiol. Lett., 2008, vol. 289, pp. 225–235.PubMedCrossRefGoogle Scholar
  21. 21.
    Brachmann, C.B., Davies, A., Cost, G.J., Hieter, P., and Boeker, J.D., Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR mediated gene disruption and other applications, Yeast, 1998, vol. 14, pp. 115–132.PubMedCrossRefGoogle Scholar
  22. 22.
    Patel, R.M., Heneghan, M.N., van Kan, J.A.L., Bailey, A.M., and Foster, G.D., The pOT vector system: improving ease of transgene expression in Botrytis cinerea, J. Gen. Appl. Microbiol., 2008, vol. 54, pp. 367–376.PubMedCrossRefGoogle Scholar
  23. 23.
    Hamada, W., Reignault, P., Bompeix, G., and Boccara, M., Transformation of Botrytis cinerea with the Hygromycin B resistance gene, hph, Curr. Genet., 1994, vol. 26, pp. 251–255.PubMedCrossRefGoogle Scholar
  24. 24.
    Gietz, R.D. and Woods, R.A., Transformations of yeast by the lithium acetate/single-stranded carrier DNA/PEG method, Meth. Microbiol., 1998, vol. 26, pp. 53–66.CrossRefGoogle Scholar
  25. 25.
    Heneghan, M.N., Yakasai, A.A., Williams, K., Kadir, K.A., Wasil, Z., Bakeer, W., Fisch, K.J., Bailey, A.M., Simpson, T.J., Cox, R.J., and Lazarus, C.M., The programming role of trans-acting enoylreductases during the biosynthesis of highly reduced fungal polyketides, Chem. Sci., 2011, vol. 2, pp. 972–979.CrossRefGoogle Scholar
  26. 26.
    Kück, U. and Hoff, B., Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi, Fungal Genet. Newsletter, 2006, vol. 53, pp. 9–11.Google Scholar
  27. 27.
    Sweigard, J.A., Chumley, F., Carroll, A., Farrell, L., and Valent, B., A series of vectors for fungal transformation, Fungal Genet. Newsletter, 1997, vol. 44, pp. 52–53.Google Scholar
  28. 28.
    van Kan, J.A.L., van Klooster, J., Wagemakers, C.A., Dees, D.C., and van der Vlugt-Bergmans, C.J., Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato, Mol. Plant-Microbe Interact., 1997, vol. 10, pp. 30–38.PubMedCrossRefGoogle Scholar
  29. 29.
    Collopy, P.D., Amey, R.C., Sergeant, M.J., Challen, M.P., Mills, P.R., Foster, G.D., and Bailey, A.M., The pmk1-like mitogen-activated protein kinase from Lecanicillium (Verticillium) fungicola is not required for virulence on Agaricus bisporus, Microbiol.-SGM, 2010, vol. 156, pp. 1439–1447.CrossRefGoogle Scholar
  30. 30.
    Sambrook, J. and Russell, D.W., Molecular Cloning. A Laboratory Manual, 3rd ed., Cold Spring Harbour, N.Y., Cold Spring Harbour Laboratory Press, 2001.Google Scholar
  31. 31.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thopmson, J.D., Gibson, T.J., and Higgins, D.G., Clustal W and Clustal X version 2.0, Bioinformatics, 2007, vol. 23, pp. 2947–2948.PubMedCrossRefGoogle Scholar
  32. 32.
    Amey, R.C., Athey-Pollard, A., Mills, P.R., Foster, G.D., and Bailey, A.M., Investigations into the taxonomy of the mushroom pathogen Verticillium fungicola and its relatives based on sequence analysis of nitrate reductase and ITS regions, Microbiology (Moscow), 2007, vol. 76, pp. 757–768.CrossRefGoogle Scholar
  33. 33.
    Saitou, N. and Nei, M., The neighbour-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.PubMedGoogle Scholar
  34. 34.
    Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H., Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 12248–12253.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Villalba, F., Collemare, J., Landraud, P., and Lambou, K., Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for nonhomologous end joining, Fung. Genet. Biol., 2008, vol. 45, pp. 68–75.CrossRefGoogle Scholar
  36. 36.
    Chang, P., Scharfenstein, L., Wei, Q., and Bhatnagar, D., Development and refinement of a high-efficiency gene targeting system for Aspergillus flavus. J. Microbiol. Methods, 2010, vol. 81, pp. 240–246.PubMedCrossRefGoogle Scholar
  37. 37.
    Takahashi, T., Masuda, T., and Koyama, Y., Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae, Mol. Gen. Genom., 2006, vol. 275, pp. 460–470.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of BristolBristolUK
  2. 2.School of Biological Sciencesthe University of AucklandAucklandNZ
  3. 3.CNRS, Bayer SAS, Université de Lyon, UMR5240: Microbiologie, Adaptation et Pathogénie, Centre de la Recherche de La DargoireUniversité Lyon 1Lyon Cedex 09France

Personalised recommendations