, Volume 82, Issue 3, pp 271–279 | Cite as

Capacity of Azospirillum thiophilum for lithotrophic growth coupled to oxidation of reduced sulfur compounds

  • E. N. Frolov
  • E. V. Belousova
  • K. S. Lavrinenko
  • G. A. DubininaEmail author
  • M. Yu. GrabovichEmail author
Experimental Articles


Capacity for lithotrophic growth coupled to oxidation of reduced sulfur compounds was revealed in an Azospirillum strain, A. thiophilum BV-S T . Oxygen concentration in the medium was the major factor determining the type of energy metabolism (organotrophic or lithotrophic) in the presence of thiosulfate. Under aerobic conditions, metabolism of A. thiophilum BV-ST was organoheterotrophic, with thiosulfate oxidation to tetrathionate resulting from the interaction with reactive oxygen species, mostly H2O2, which was formed in the electron transport chain in the course of oxidation of organic electron donors. Under microaerobic conditions (2 mg/L O2 in liquid medium), A. thiophilum BV-ST carried out lithoheterotrophic (mixotrophic) metabolism; enzymes of the dissimilatory type of sulfur metabolism were responsible for thiosulfate oxidation to tetrathionate and sulfate. Two enzyme systems were found in the cells: thiosulfate dehydrogenase, which catalyzes incomplete oxidation of thiosulfate to tetrathionate and the thiosulfate-oxidizing Sox enzyme complex, which is involved in complete oxidation of thiosulfate to sulfate. The genetic determinant of a Sox complex component in A. thiophilum BV-ST was revealed. The soxB gene was found, and its expression under microaerobic conditions was observed to increase 32-fold compared to aerobic cultivation.


lithotrophy thiosulfate oxidation Sox complex thiosulfate: ferricytochrome c oxidoreductase gene expression aerobic and microaerobic conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ignatov, I.I., Biological nitrogen fixation and nitrogen fixers, Soros. Obraz. Zh., 1998, no. 9, pp. 28–33.Google Scholar
  2. 2.
    Dekhil, B., Cahill, M., Stackebrandt, E., and Sly, L., Transfer of Conglomeromonas largomobile subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov. and elevation of Conglomeromonas largomobilis subsp. paroensis to the new type species of Conglomeromonas, Conglomeromonas paroensis sp. nov., Syst. Appl. Microbiol., 1997, vol. 20, pp. 72–77.CrossRefGoogle Scholar
  3. 3.
    Sly, L. and Stackebrandt, E., Description of Scermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 541–544.CrossRefGoogle Scholar
  4. 4.
    Lavrinenko, K., Chernousova, E., Gridneva, E., Dubinina, G., Akimov, V., Kuever, J., Lysenko, A., and Grabovich, M., Azospirillum thiophilum sp. nov., a novel diazotrophic bacterium isolated from a sulfide spring, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2832–2837.PubMedCrossRefGoogle Scholar
  5. 5.
    Hartmann, A. and Burris, R.H., Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum, Int. J. Syst. Bacteriol., 1987, vol. 169, pp. 944–948.Google Scholar
  6. 6.
    Caraway, B. and Krieg, N., Aerotaxis in Spirillum volutans, Can. J. Microbiol., 1974, vol. 20, pp. 1367–1377.CrossRefGoogle Scholar
  7. 7.
    Pfennig, N. and Lippert, K.D., Uber das Vitamin B12-bedurfuis phototropher Schwefelbakterien, Arch. Microbiol., 1966, vol. 55, no. 1, pp. 245–256.Google Scholar
  8. 8.
    Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, V.Yu., Metody analiza prirodnykh vod (Methods for Analysis of Natural Waters), Moscow: Gosgeoltekhizdat, 1970.Google Scholar
  9. 9.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  10. 10.
    Bredford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefGoogle Scholar
  11. 11.
    Hensen, D., Sperling, D., Trüper, H.G., Brune, D.C., and Dahl, C., Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum, Mol. Microbiol., 2006, vol. 62, no.3, pp. 794–810.PubMedCrossRefGoogle Scholar
  12. 12.
    Petushkova, Yu.P. and Ivanovskii, R.N., Sulfite oxidation by Thiocapsa roseopersicina, Mikrobiologiya, 1976, vol. 45, no. 4, pp. 592–597.Google Scholar
  13. 13.
    Peck, H.D. and Deacon, T.E., Studies of adenosine-5′-phophosulfate-reductase from Desulfovibrio desulfuricans and Thiobacillus denitrificans, J. Biochem., 1968, vol. 97, pp. 651–657.Google Scholar
  14. 14.
    Shol’ts, K.F. and Ostrovskii, D.N., Cell for amperometric oxygen determination, in Metody sovremennoi biokhimii (Methods in Modern Biochemistry), Moscow, 1975, pp. 52–58.Google Scholar
  15. 15.
    Meyer, B. and Kuever, J., Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase encoding genes (aprBA) among sulfur-oxidizing prokaryotes, Microbiology (UK), 2007, vol. 153, pp. 3478–3498.CrossRefGoogle Scholar
  16. 16.
    Meyer, B., Imhoff, J.F., and Kuever, J., Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system, Environ. Microbiol., 2007, vol. 9, no. 12, pp. 2957–2977.PubMedCrossRefGoogle Scholar
  17. 17.
    Pham, V.H., Yong, J.J., Park, S.J., Yoon, D.N, Chung, W.H., and Rhee, S.K., Molecular analysis of the diversity of the sulfide: quinone reductase (sqr) gene in sediment environments, Microbiology (UK), 2008, vol. 154, pp. 3112–3121.CrossRefGoogle Scholar
  18. 18.
    Loy A., Duller S., Baranyi C., Mußmann M., Ott J., Sharon I., Béjà O., Le Paslier D., Dahl C., and Wagner M. Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes, Environ. Microbiol., 2009, vol. 11, no. 2, pp. 289–299.PubMedCrossRefGoogle Scholar
  19. 19.
    Friedrich, C.G., Rother, D., Bardischewsky, F., Quentmeier, A., and Fischer, J., Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?, Appl. Environ. Microbiol. 2001, vol. 67, pp. 2873–2882.PubMedCrossRefGoogle Scholar
  20. 20.
    Dubinina, G.A., Grabovich, M.Yu., Churikova, V.V., Pashkov, A.N., Chekanova, Yu.A., and Leshcheva, N.V., Production of hydrogen peroxide by Beggiatoa leptomitiformis, Microbiology, 1990, vol. 59, no. 3, pp. 283–288.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations