, Volume 82, Issue 2, pp 126–132 | Cite as

Effect of the reactivating factor of Luteococcus japonicus subsp. casei on the expression of SOS response genes

  • N. G. Loiko
  • L. I. Vorob’eva
  • E. Yu. Khodzhaev
  • A. N. Kozlova
  • V. F. Gal’chenko
  • G. I. El’-Registan
Experimental Articles


The effect of the extracellular peptide reactivating factor (RF) synthesized by Luteococcus casei on stress response of Escherichia coli cells subjected to UV irradiation was studied. For these studies, we constructed a test strain carrying the umuD-lacZ operon. The expression rate of this operon reflects the rate of SOS response. Protective effect of RF, defined as the number of cells retaining the colony-forming activity (CFU) after UV irradiation (49–1166 J/m2), was dose-dependent, species-nonspecific, and increasing with increase of the stress load. RF was demonstrated to possess the properties of a direct adaptogen: 15 min of preincubation with RF caused a 1.5–6-fold decrease in expression of the umuD SOS response gene in UV-treated cells, concurrently with a 1.2–7.5 times increase in the number of viable cells (those having retained their colony-forming activity). The probable mechanisms of the protective effect of RF are being discussed.


reactivating factor (RF) Luteococcus japonicus subsp. casei stress protection UV irradiation E. coli SOS response umuD-lacZ hybrid operon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boor, K.J., Bacterial Stress Responses: What Doesn’t Kill Them Can Make Them Stronger, PLoS Biol., 2006, vol. 4, no. 1, e23. doi:10.1371/journal.pbio.0040023PubMedCrossRefGoogle Scholar
  2. 2.
    Basnak’yan, I.A., Stress u bakterii (Stress in Bacteria), Moscow: Meditsina, 2003.Google Scholar
  3. 3.
    Hersh, M.N., Ponder, R.G., Hastings, P.J., and Rosenberg, S.M., Adaptive Mutation and Amplification in Escherichia coli: Two Pathways of Genome Adaptation under Stress, Res. Microbiol., 2004, vol. 255, pp. 352–359.CrossRefGoogle Scholar
  4. 4.
    Woude van der, M.V. and Baumler, A.J., Phase and Antigenic Variation in Bacteria, Clin. Microbiol. Rev., 2004, vol. 17, no. 3, pp. 581–611.PubMedCrossRefGoogle Scholar
  5. 5.
    Aersten, A. and Michirlis, C.W., Diversify or Die: Generation of Diversity in Response to Stress, Crit. Rev. Microbiol., 2005, vol. 31, pp. 69–78.CrossRefGoogle Scholar
  6. 6.
    Foster, P.L., Stress Induced Mutagenesis in Bacteria, Crit. Rev. Biochem. Mol. Biol., 2007, vol. 42, pp. 373–397.PubMedCrossRefGoogle Scholar
  7. 7.
    Hengge-Aronis, R., Survival of Hunger and Stress: The Role of rpoS in Early Stationary Phase Gene Regulation in Escherichia coli, Cell, 1993, vol. 72, pp. 165–168.PubMedCrossRefGoogle Scholar
  8. 8.
    Booth, I.R., Adaptation to Extreme Environments, in Biology of the Prokaryotes, Lengeler, J.W., Drews, G., and Schlegel, H.G., Eds., Stuttgart: Thieme, 1999 [Russ. Transl. Moscow: Mir, 2005, vol. 2, pp. 122–146].Google Scholar
  9. 9.
    Martinez, A. and Kolter, R., Protection of DNA during Oxidative Stress by the Nonspecific DNA-Binding Protein Dps, J. Bacteriol., 1997, vol. 179, pp. 5188–5194.PubMedGoogle Scholar
  10. 10.
    Aburatani, S. and Horimoto, K., Elucidation of the Relationships between LexA-Regulated Genes in the SOS Response, Genome Inform., 2005, vol. 16, no. 1, pp. 95–105.PubMedGoogle Scholar
  11. 11.
    Walker, C.G., The SOS Response in Escherichia coli, in Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhardt, F.C., Curtiss, R. III, Ingraham, J.L., Lin, E.C.C., Low, K.B. et al., Eds., Washington: ASM, 1996, pp. 1400–1416.Google Scholar
  12. 12.
    Nikolaev, Yu.A., Mulyukin, A.L., Stepanenko, I.Yu., and El’-Registan, G.I., Autoregulation of Stress Response in Microorganisms, Microbiology, 2006, vol. 75, no. 4, pp. 420–426.CrossRefGoogle Scholar
  13. 13.
    Rowbury, R.J., Cross-Talk Involving Extracellular Sensors and Extracellular Alarmones Gives Early Warning to Unstressed Escherichia coli of Impeding Lethal Chemical Stress and Leads to Induction of Tolerance Responses, J. Appl. Microbiol., 2001, vol. 90, no. 2, pp. 677–695.PubMedCrossRefGoogle Scholar
  14. 14.
    Rowbury, R.J., UV-Radiation-Induced Enterobacterial Responses, Other Processes That Influence UV Tolerance and Likely Environmental Significance, Sci. Prog., 2003, vol. 86, nos. 1–2, pp. 139–155.PubMedCrossRefGoogle Scholar
  15. 15.
    Oktyabr’skii, O.N. and Smirnova, G.V., Redox Regulation of Cellular Functions, Biochemistry (Moscow), 2007, vol. 72, no. 2, pp. 132–145.CrossRefGoogle Scholar
  16. 16.
    Golod, N.A., Loiko, N.G., Lobanov, K.V., Mironov, A.S., Voeikova, T.A., Gal’chenko, V.F., Nikolaev, Yu.A., and El’-Registan, G.I., Involvement of Alkylhydroxybenzenes, Microbial Autoregulators, in Controlling the Expression of Stress Regulons, Microbiology, 2009, vol. 78, no. 6, pp. 678–688.CrossRefGoogle Scholar
  17. 17.
    Vorob’eva, L.I., Khodzhaev, E.Yu., and Ponomareva, G.M., The Extracellular Protein of Luteococcus japonicus subsp. casei Reactivated Cells Inactivated by UV Irradiation or Heat Shock, Microbiology, 2003, vol. 72, no. 4, pp. 428–433.CrossRefGoogle Scholar
  18. 18.
    Vorob’eva, L.I., Khodzhaev, E.Yu., Ponomareva, G.M., and Bryukhanov, A.L., Extracellular Protein Metabolite of Luteococcus japonicus subsp. casei Reactivates Cells Subjected to Oxidative Stress, Appl. Biochem. Microbiol., 2003, vol. 39, no. 2, pp. 178–182.CrossRefGoogle Scholar
  19. 19.
    Vorob’eva, L.I., Khodzhaev, E.Yu., and Ponomareva, G.M., Cross-Effects of Extracellular Factors of Adaptation to Stress in Luteococcus casei and Saccharomyces cerevisiae, Appl. Biochem. Microbiol., 2005, vol. 41, no. 2, pp. 150–153.CrossRefGoogle Scholar
  20. 20.
    Vorob’eva, L.I., Khodzhaev, E.Yu., and Ponomareva, G.M., Protective Effects of Extracellular Protein Metabolite of Luteococcus japonicus subsp. casei on Cells Subjected to Heating and UV Irradiation, Appl. Biochem. Microbiol., 2008, vol. 44, no. 1, pp. 38–41.CrossRefGoogle Scholar
  21. 21.
    Vorob’eva, L.I., Khodzhaev, E.Yu., Mulyukin, A.L., and Toropygin, I.Yu., The Mechanism of Action of Reactivating Factor from Luteococcus japonicus subsp. casei, Appl. Biochem. and Microbiology, 2009, vol. 45, no. 5, pp. 489–493.CrossRefGoogle Scholar
  22. 22.
    Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor Lab., 1972.Google Scholar
  23. 23.
    Lewis, K., Persister Cells and the Riddle of Biofilm Survival, Biochemistry (Moscow), 2005, vol. 70, no. 2, pp. 267–274.CrossRefGoogle Scholar
  24. 24.
    Vorob’eva, L.I., Fedotova, A.V., and Khodzhaev, E.Yu., Protective Action of Reactivating Factor of Luteococcus japonicus subsp. casei toward Cells of Escherichia coli Reparation Mutants Inactivated with UV-Light, Appl. Biochem. Microbiol., 2010, vol. 46, no. 6, pp. 567–573.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. G. Loiko
    • 1
  • L. I. Vorob’eva
    • 2
  • E. Yu. Khodzhaev
    • 2
  • A. N. Kozlova
    • 1
  • V. F. Gal’chenko
    • 1
  • G. I. El’-Registan
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations