Skip to main content
Log in

Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Aerobic bacterial degradation of PAHs is reviewed. Particular attention is paid to its kinetic aspects (rate and specificity). The general concepts of PAH biodegradation in nature and the role of aerobic bacteria in this process are described. The problem of PAH bioavailability and the mechanism of PAH penetration through bacterial cell wall are discussed. The key role of the reaction of PAH hydroxylation in controlling the rate and specificity of PAH biodegradation process is substantiated. The effects of competitive inhibition, intermediate inhibition, cross induction, and cometabolism are considered. The importance of microbial communities for PAH biodegradation in natural ecosystems is shown. The review contains the list of 138 references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yan, J., Wang, L., Fu, P.P., and Yu, H., Photomutagenicity of 16 Polycyclic Aromatic Hydrocarbons from the US EPA Priority Pollutant List, Mutat. Res., 2004, vol. 557, pp. 99–108.

    Article  PubMed  CAS  Google Scholar 

  2. Srogi, K., Monitoring of Environmental Exposure to Polycyclic Aromatic Hydrocarbons: A Review, Environ. Chem. Lett., 2007, vol. 5, pp. 169.

    Article  CAS  Google Scholar 

  3. Shental, R., 1971. Carcinogenic Effect of Polycyclic Aromatic Hydrocarbons and Some Other Compounds, in Politsiklicheskie uglevodorody (Polycyclic Hydrocarbons), Clar, E., Ed., Moscow: Mir, vol. 1, pp. 138–163.

    Google Scholar 

  4. Johnsen, A.R. and Karlson, U., Diffuse PAH Contamination of Surface Soils: Environmental Occurrence, Bioavailability, and Microbial Degradation, Appl. Microbiol. Biotechnol., 2007, vol. 76, pp. 533–543.

    Article  PubMed  CAS  Google Scholar 

  5. Mueller, J.G., Chapman, P.J., and Pritchard, P.H., Creosote Contaminated Sites: Their Potential for Bioremediation, Environ. Sci. Technol., 1989, vol. 23, pp. 1197–1201.

    Article  CAS  Google Scholar 

  6. Allard, A.-S. and Neilson, A.H., Bioremediation of Organic Waste Sites: A Critical Review of Microbiological Aspects, Int. Biodeterior. Biodegr., 1997, vol. 39, pp. 253–285.

    Article  CAS  Google Scholar 

  7. Birak, P.S. and Miller, C.T., Dense Non-Aqueous Phase Liquids at Former Manufactured Gas Plants: Challenges to Modeling and Remediation, J. Contaminant Hydrol., 2009, vol. 105, pp. 81–98.

    Article  CAS  Google Scholar 

  8. Cerniglia, C.E., Biodegradation of Polycyclic Aromatic Hydrocarbons, Biodegradation, 1992, vol. 3, pp. 351–368.

    Article  CAS  Google Scholar 

  9. Barker, J.F., Fraser, M., Blaine, F., and Cooke, C., Natural Attenuation of PAHs and Heterocyclic Organics in Groundwater: 10 Years of Experience with a Controlled Field Experiment, 12th Int. Petrol. Environ. Conf., Houston, 2005.

  10. Fraser, M., Barker, J.F., Butler, B., Blaine, F., Joseph, S., and Cooke, C., Natural Attenuation of a Plume from an Emplaced Coal Tar Creosote Source over 14 Years, J. Contaminant Hydrol., 2009, vol. 100, pp. 101–115.

    Article  CAS  Google Scholar 

  11. Mulligan, C.N. and Yong, R.N., Natural Attenuation of Contaminated Soils, Environ. Int., 2004, vol. 30, pp. 587–601.

    Article  PubMed  CAS  Google Scholar 

  12. Atagana, H.I., Bioremediation of Creosote-Contaminated Soil in South Africa by Landfarming, J. Appl. Microbiol., 2004, vol. 96, pp. 510–520.

    Article  PubMed  CAS  Google Scholar 

  13. Antizar-Ladislao, B., Lopez-Real, J., and Beck, A., Bioremediation of Polycyclic Aromatic Hydrocarbon (PAH)-Contaminated Waste Using Composting Approaches, Crit. Rev. Environ. Sci. Technol., 2004, vol. 34, pp. 249–289.

    Article  CAS  Google Scholar 

  14. Giordano, A., Stante, L., Pirozzi, F., Cesaro, R., and Bortone, G., Sequencing Batch Reactor Performance Treating PAH Contaminated Lagoon Sediments, J. Hazard. Materials, 2005, vol. 119, pp. 159–166.

    Article  CAS  Google Scholar 

  15. Quijano, G., Hernandez, M., Thalasso, F., Mu~noz, R., and Villaverde, S., Two-Phase Partitioning Bioreactors in Environmental Biotechnology, Appl. Microbiol. Biotechnol., 2009, vol. 84, pp. 829–846.

    Article  PubMed  CAS  Google Scholar 

  16. Kathi, S. and Khan, A.B., Phytoremediation Approaches to PAH Contaminated Soil, Indian J. Sci. Technol., 2011, vol. 4, pp. 56–63.

    CAS  Google Scholar 

  17. Cerniglia, C.E., Fungal Metabolism of Polycyclic Aromatic Hydrocarbons: Past, Present and Future Applications in Bioremediation, J. Ind. Microbiol. Biotechnol., 1997, vol. 19, pp. 324–333.

    Article  PubMed  CAS  Google Scholar 

  18. Mihelcic, J.R. and Luthy, R.G., Degradation of Polycyclic Aromatic Hydrocarbon Compounds under Various Redox Conditions in Soil-Water Systems, Appl. Environ. Microbiol., 1988, vol. 54, pp. 1182–1187.

    PubMed  CAS  Google Scholar 

  19. Sharak Genthner, B.R., Townsend, G.T., Lantz, S.E., and Mueller, J.G., Persistence of Polycyclic Aromatic Hydrocarbon Components of Creosote under Anaerobic Enrichment Conditions, Arch. Environ. Contaminat. Toxicol., 1997, vol. 32, pp. 99–105.

    Article  CAS  Google Scholar 

  20. Eriksson, M., Sodersten, E., Yu, Z., and Dalhammar, G., Degradation of Polycyclic Aromatic Hydrocarbons at Low Temperature under Aerobic and Nitrate-Reducing Conditions in Enrichment Cultures from Northern Soils, Appl. Environ. Microbiol., 2003, vol. 69, pp. 275–284.

    Article  PubMed  CAS  Google Scholar 

  21. Meckenstock, R.U., Safinowski, M., and Griebler, C., Anaerobic Degradation of Polycyclic Aromatic Hydrocarbons, FEMS Microbiol. Ecol., 2004, vol. 49, pp. 27–36.

    Article  PubMed  CAS  Google Scholar 

  22. Luthy, R.D., Aiken, G.R., Brusseau, M.L., Cunningham, D.S., Gschwend, P.M., Pignatello, J.J., Reinhard, M., Traina, S.J., Weber, W.J., and Westall, J.C., Sequestration of Hydrophobic Organic Contaminants by Geosorbents, Environ. Sci. Technol., 1997, vol. 31, pp. 3341–3347.

    Article  CAS  Google Scholar 

  23. Alexander, M., Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants, Environ. Sci. Technol., 2000, vol. 34, pp. 4259–4265.

    Article  CAS  Google Scholar 

  24. Cornelissen, G., Gustafsson, Ö., Bucheli, T.D., Jonker, M.T.O., Koelmans, A.A., and VanNoort, P.C.M., Extensive Sorption of Organic Compounds to Black Carbon, Coal, and Kerogen in Sediments and Soils: Mechanisms and Consequences for Distribution, Bioaccumulation, and Biodegradation, Environ. Sci. Technol., 2005, vol. 39, pp. 6881–6895.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, W.X., Bouwer, E.J., and Ball, W.P., Bioavailability of Hydrophobic Organic Contaminants: Effects and Implications of Sorption-Related Mass Transfer on Bioremediation, Ground Water Monit., 1998, vol. 18, pp. 126–138.

    Article  Google Scholar 

  26. Bouchez, M., Blanchet, D., and Vandecasteele, J.-P., Substrate Availability in Phenanthrene Biodegradation: Transfer Mechanism and Influence on Metabolism, Appl. Microbiol. Biotechnol., 1995, vol. 43, pp. 952–960.

    Article  PubMed  CAS  Google Scholar 

  27. Volkering, F., Breure, A.M., van Andel, J.G., and Rulkens, W.H., Influence of Nonionic Surfactants on Bioavailability and Biodegradation of Polycyclic Aromatic Hydrocarbons, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1699–1705.

    PubMed  CAS  Google Scholar 

  28. Wick, L.Y., Colangelo, T., and Harms, H., Kinetics of Mass Transfer-Limited Bacterial Growth on Solid PAHs, Environ. Sci. Technol., 2001, vol. 35, pp. 354–361.

    Article  PubMed  CAS  Google Scholar 

  29. Bouchez, M., Blanchet, D., and Vandecasteele, J.-P., An Interfacial Uptake Mechanism for the Degradation of Pyrene by a Rhodococcus Strain, Microbiology (UK), 1997, vol. 143, pp. 1087–1093.

    Article  CAS  Google Scholar 

  30. MacLeod, C.T. and Daugulis, A.J., Interfacial Effects in a Two-Phase Partitioning Bioreactor: Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by a Hydrophobic Mycobacterium, Process. Biochem., 2005, vol. 40, pp. 1799–1805.

    Article  CAS  Google Scholar 

  31. Vacca, D.J., Bleam, W.F., and Hickey, W.J., Isolation of Soil Bacteria Adapted to Degrade Humic Acid-Sorbed Phenanthrene, Appl. Environ. Microbiol., 2005, vol. 71, pp. 3797–3805.

    Article  PubMed  CAS  Google Scholar 

  32. Xia, X., Li, Y., Zhou, Z., and Feng, C., Bioavailability of Adsorbed Phenanthrene by Black Carbon and Multi-Walled Carbon Nanotubes to Agrobacterium, Chemosphere, 2010, vol. 78, pp. 1329–1336.

    Article  PubMed  CAS  Google Scholar 

  33. Stringfellow, W.T. and Aitken, M.D., Comparative Physiology of Phenanthrene Degradation by Two Dissimilar Pseudomonads Isolated from a Creosote Contaminated Soil, Can. J. Microbiol., 1994, vol. 40, pp. 432–438.

    Article  PubMed  CAS  Google Scholar 

  34. Guha, S. and Jaffé, P.R., Biodegradation Kinetics of Phenanthrene Partitioned into the Micellar Phase of Nonionic Surfactants, Environ. Sci. Technol., 1996, vol. 30, pp. 605–611.

    Article  CAS  Google Scholar 

  35. Semple, K.T., Doick, K.J., Jones, K.C., Burauel, P., Craven, A., and Harms, H., Defining Bioavailability and Bioaccessibility of Contaminated Soil and Sediment Is Complicated, Environ. Sci. Technol., 2004, vol. 38, pp. 228–231.

    Article  Google Scholar 

  36. Bosma, R.M.P., Middeldorp, P.J.M., Schraa, G., and Zehnder, A.J.B., Mass Transfer Limitation of Biotransformation: Quantifying Bioavailability, Environ. Sci. Technol., 1997, vol. 31, pp. 248–252.

    Article  CAS  Google Scholar 

  37. Volkering, F., Breure, A.M., Sterkenburg, A., and van Andel, J.G., Microbial Degradation of Polycyclic Aromatic Hydrocarbons: Effect of Substrate Availability on Bacterial Growth Kinetics, Appl. Microbiol. Biotechnol., 1992, vol. 36, pp. 548–552.

    Article  CAS  Google Scholar 

  38. Yamane, T. and Shimizu, S., Fed-Batch Techniques in Microbial Processes, Adv. Biochem. Eng./Biotechnol., 1984, vol. 30, pp. 147–194.

    Article  CAS  Google Scholar 

  39. Panikov, N.S., Microbial Growth Kinetics, London: Chapman & Hall, 1995.

    Google Scholar 

  40. Johnsen, A.R., Wick, L.Y., and Harms, H., Principles of Microbial PAH Degradation in Soil, Environ. Pollut., 2005, vol. 133, pp. 71–84.

    Article  PubMed  CAS  Google Scholar 

  41. Reichenberg, F. and Mayer, P., Two Complementary Sides of Bioavailability: Accessibility and Chemical Activity of Organic Contaminants in Sediments and Soils, Environ. Toxicol. Chem., 2006, vol. 25, pp. 1239–1245.

    Article  PubMed  CAS  Google Scholar 

  42. Déziel, E., Comeau, Y., and Villemur, R., Two-Liquid-Phase Bioreactors for Enhanced Degradation of Hydrophobic/Toxic Compounds, Biodegradation, 1999, vol. 10, pp. 219–233.

    Article  PubMed  Google Scholar 

  43. Wick, L.Y., Ruiz de Munain, A., Springael, D., and Harms, H., Responses of Mycobacterium sp. LB501T to the Low Bioavailability of Solid Anthracene, Appl. Microbiol. Biotechnol., 2002, vol. 58, pp. 378–385.

    Article  PubMed  CAS  Google Scholar 

  44. Wick, L.Y., Pelz, O., Bernasconi, S.M., Andersen, N., and Harms, H., Influence of the Growth Substrate on Ester-Linked Phospho- and Glycolipid Fatty Acids of Mycobacterium sp. LB501T, Environ. Microbiol., 2003, vol. 5, pp. 672–680.

    Article  PubMed  CAS  Google Scholar 

  45. Grimm, A.C. and Harwood, C.S., Chemotaxis of Pseudomonas sp. to the Polyaromatic Hydrocarbon, Naphthalene, Appl. Environ. Microbiol., 1997, vol. 63, pp. 4111–4115.

    PubMed  CAS  Google Scholar 

  46. Christofi, N. and Ivshina, I.B., Microbial Surfactants and Their Use in Field Studies of Soil Remediation, J. Appl. Microbiol., 2002, pp. 915–929.

  47. Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., and Marchant, R., Microbial Biosurfactants Production, Applications and Future Potential, Appl. Microbiol. Biotechnol., 2010, vol. 87, pp. 427–444.

    Article  PubMed  CAS  Google Scholar 

  48. Makkar, R.S. and Rockne, K.J., Comparison of Synthetic Surfactants and Biosurfactants in Enhancing Biodegradation of Polycyclic Aromatic Hydrocarbons, Environ. Toxicol. Chem., 2003, vol. 22, pp. 2280–2292.

    Article  PubMed  CAS  Google Scholar 

  49. Whitman, B.E., Lueking, D.R., and Mihelcic, J.R., Naphthalene Uptake by a Pseudomonas fluorescens Isolate, Can. J. Microbiol., 1998, vol. 44, pp. 1086–1093.

    PubMed  CAS  Google Scholar 

  50. Miyata, N., Iwahori, K., Foght, J.M., and Gray, M.R., Saturable, Energy-Dependent Uptake of Phenanthrene in Aqueous Phase by Mycobacterium sp. Strain RJGII-135, Appl. Environ. Microbiol., 2004, vol. 70, pp. 363–369.

    Article  PubMed  CAS  Google Scholar 

  51. Bugg, T., Foght, J.M., Pickard, M.A., and Gray, M.R., Uptake and Active Efflux of Polycyclic Aromatic Hydrocarbons by Pseudomonas fluorescens LP6a, Appl. Environ. Microbiol., 2000, vol. 66, pp. 5387–5392.

    Article  PubMed  CAS  Google Scholar 

  52. Hearn, E.M., Dennis, J.J., Gray, M.R., and Foght, J.M., Identification and Characterization of the emhABC Efflux System for Polycyclic Aromatic Hydrocarbons in Pseudomonas fluorescens cLP6a, J. Bacteriol., 2003, vol. 185, pp. 6233–6240.

    Article  PubMed  CAS  Google Scholar 

  53. Adebusuyi, A.A. and Foght, J.M., An Alternative Physiological Role for the EmhABC Efflux Pump in Pseudomonas fluorescens cLP6a, BMC Microbiol., 2011, vol. 11, p. 252.

  54. Ferraro, D.J., Gakhar, L., and Ramaswamy, S., Rieske Business: Structure-Function of Rieske Non-Heme Oxygenases, Biochem. Biophys. Res. Commun., 2005, vol. 338, pp. 175–190.

    Article  PubMed  CAS  Google Scholar 

  55. Chadhain, S.M.N., Norman, R.S., Pesce, K.V., Kukor, J.J., and Zylstra, G.J., Microbial Dioxygenase Gene Population Shifts during Polycyclic Aromatic Hydrocarbon Biodegradation, Appl. Environ. Microbiol., 2006, vol. 72, pp. 4078–4087.

    Article  CAS  Google Scholar 

  56. Moser, R. and Stahl, U., Insights into the Genetic Diversity of Initial Dioxygenases from PAH-Degrading Bacteria, Appl. Microbiol. Biotechnol., 2001, vol. 609–618.

  57. Zhou, H.W., Guo, C.L., Wong, Y.S., and Tam, N.F.Y., Genetic Diversity of Dioxygenase Genes in Polycyclic Aromatic Hydrocarbon-Degrading Bacteria Isolated from Mangrove Sediments, FEMS Microbiol. Lett., 2006, vol. 262, pp. 148–157.

    Article  PubMed  CAS  Google Scholar 

  58. Iwai, S., Johnson, T.A., Chai, B., Hashsham, S.A., and Tiedje, J.M., Comparison of the Specificities and Efficacies of Primers for Aromatic Dioxygenase Gene Analysis of Environmental Samples, Appl. Environ. Microbiol., 2011, vol. 77, pp. 3551–3557.

    Article  PubMed  CAS  Google Scholar 

  59. Na, K.S., Kuroda, A., Takiguchi, N., Ikeda, T., Ohtake, H., and Kato, J., Isolation and Characterization of Benzene-Tolerant Rhodococcus opacus Strains, J. Biosci. Bioeng., 2005, vol. 99, pp. 378–382.

    Article  PubMed  CAS  Google Scholar 

  60. Eaton, R.W. and Timmis, K.N., Characterization of a Plasmid-Specified Pathway for Catabolism of Isopropylbenzene in Pseudomonas putida RE204, J. Bacteriol., 1986, vol. 168, pp. 123–131.

    PubMed  CAS  Google Scholar 

  61. Dong, X., Fushinobu, S., Fukuda, E., Terada, T., Nakamura, S., Shimizu, K., Nojiri, H., Omori, T., Shoun, H., and Wakagi, T., Crystal Structure of the Terminal Oxygenase Component of Cumene Dioxygenase from Pseudomonas fluorescens IP01, J. Bacteriol., 2005, vol. 187, pp. 2483–2490.

    Article  PubMed  CAS  Google Scholar 

  62. Beil, S., Happe, B., Timmis, K.N., and Pieper, D.H., Genetic and Biochemical Characterization of the Broad Spectrum Chlorobenzene Dioxygenase from Burkholderia sp. Strain PS12-Dechlorination of 1,2,4,5-Tetrachlorobenzene, Eur. J. Biochem., 1997, vol. 247, pp. 190–199.

    Article  PubMed  CAS  Google Scholar 

  63. Jiang, X.W., Liu, H., Xu, Y., Wang, S.J., Leak, D.J., and Zhou, N.Y., Genetic and Biochemical Analyses of Chlorobenzene Degradation Gene Clusters in Pandoraea sp. Strain MCB032, Arch. Microbiol., 2009, vol. 191, pp. 485–492.

    Article  PubMed  CAS  Google Scholar 

  64. Kulkarni, M. and Chaudhari, A., Microbial Remediation of Nitro-Aromatic Compounds: An Overview, J. Environ. Management, 2007, vol. 85, pp. 496–512.

    Article  CAS  Google Scholar 

  65. Ang, E.L., Obbard, J.P., and Zhao, H., Directed Evolution of Aniline Dioxygenase for Enhanced Bioremediation of Aromatic Amines, Appl. Microbiol. Biotechnol., 2009, vol. 81, pp. 1063–1070.

    Article  PubMed  CAS  Google Scholar 

  66. Furukawa, K., Suenaga, H., and Goto, M., Biphenyl Dioxygenases: Functional Versatilities and Directed Evolution, J. Bacteriol., 2004, vol. 186, pp. 5189–5196.

    Article  PubMed  CAS  Google Scholar 

  67. Pieper, D.H. and Seeger, M., Bacterial Metabolism of Polychlorinated Biphenyls, J. Mol. Microbiol. Biotechnol., 2008, vol. 15, pp. 121–138.

    Article  PubMed  CAS  Google Scholar 

  68. Bundy, B.M., Campbell, A.L., and Neidle, E.L., Similarities between the antABC-Encoded Anthranilate Dioxygenase and the benABC-Encoded Benzoate Dioxygenase of Acinetobacter sp. Strain ADP1, J. Bacteriol., 1998, vol. 180, pp. 4466–4474.

    PubMed  CAS  Google Scholar 

  69. Eaton, R.W., Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B, J. Bacteriol., 2001, vol. 183, pp. 3689–3703.

    Article  PubMed  CAS  Google Scholar 

  70. Bressler, D.C. and Fedorak, P.M., Bacterial Metabolism of Fluorene, Dibenzofuran, Dibenzothiophene, and Carbazole, Can. J. Microbiol., 2000, vol. 46, pp. 397–409.

    Article  PubMed  CAS  Google Scholar 

  71. Gibson, D.T. and Parales, R.E., Aromatic Hydrocarbon Dioxygenases in Environmental Biotechnology, Curr. Opin. Biotechnol., 2000, vol. 11, pp. 236–243.

    Article  PubMed  CAS  Google Scholar 

  72. Nam, J.W., Nojiri, H., Yoshida, T., Habe, H., Yamane, H., and Omori, T., New Classification System for Oxygenase Components Involved in RingHydroxylating Oxygenations, Boisci. Biotechnol. Biochem., 2001, vol. 65, pp. 254–263.

    Article  CAS  Google Scholar 

  73. Pérez-Pantoja, D., González, B., and Pieper, D.H., Aerobic Degradation of Aromatic Hydrocarbons, in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer, 2010, pp. 800–837.

    Google Scholar 

  74. Kweon, O., Kim, S.J., Baek, S., Chae, J.C., Adjei, M.D., Baek, D.H., Kim, Y.C., and Cerniglia, C.E., A New Classification System for Bacterial Rieske Non-Heme Iron Aromatic Ring-Hydroxylating Oxygenases, BMC Biochem., 2008, vol. 9, p. 11.

    Article  PubMed  CAS  Google Scholar 

  75. Notredame, C., Higgins, D.G., and Heringa, J., T-Coffee: A Novel Method for Fast and Accurate Multiple Sequence Alignment, J. Mol. Biol., 2000, vol. 205–217.

  76. Van de Peer, Y. and De Wachter, R., Construction of Evolutionary Distance Trees with TREECON, Comput. Applic. Biosci., 1997, vol. 13, pp. 227–230.

    Google Scholar 

  77. Suen, W.-C., Haigler, B.E., and Spain, J.C., 2,4-Dinitrotoluene Dioxygenase from Burkholderia sp. Strain DNT: Similarity to Naphthalene Dioxygenase, J. Bacteriol., 1996, vol. 178, pp. 4926–4934.

    PubMed  CAS  Google Scholar 

  78. Lessner, D.J., Johnson, G.R., Parales, R.E., Spain, J.C., and Gibson, D.T., Molecular Characterization and Substrate Specificity of Nitrobenzene Dioxygenase from Comamonas sp. Strain JS765, Appl. Environ. Microbiol., 2002, vol. 68, pp. 634–641.

    Article  PubMed  CAS  Google Scholar 

  79. Kimura, N., Kitagawa, W., Mori, T., Nakashima, N., Tamura, T., and Kamagata, Y., Genetic and Biochemical Characterization of the Dioxygenase Involved in Lateral Dioxygenation of Dibenzofuran from Rhodococcus opacus Strain SAO101, Appl. Microbiol. Biotechnol., 2006, vol. 73, pp. 474–484.

    Article  PubMed  CAS  Google Scholar 

  80. Kasai, Y., Shindo, K., Harayama, S., and Misawa, N., Molecular Characterization and Substrate Preference of a Polycyclic Aromatic Hydrocarbon Dioxygenase from Cycloclasticus sp. Strain A5, Appl. Environ. Microbiol., 2003, vol. 69, pp. 6688–6697.

    Article  PubMed  CAS  Google Scholar 

  81. Pagnout, C., Frache, G., Poupin, P., Maunit, B., Muller, J.F., and Ferard, J.F., Isolation and Characterization of a Gene Cluster Involved in PAH Degradation in Mycobacterium sp. Strain SNP11: Expression in Mycobacterium smegmatis mc2155, Res. Microbiol., 2007, vol. 158, pp. 175–186.

    Article  PubMed  CAS  Google Scholar 

  82. Schuler, L., Jouanneau, Y., Chadhain, S.M.N., Meyer, C., Pouli, M., Zylstra, G.J., Hols, P., and Agathos, S.N., Characterization of a Ring-Hydroxylating Dioxygenase from Phenanthrene-Degrading Sphingomonas sp. Strain LH128 Able to Oxidize Benz[a]anthracene, Appl. Microbiol. Biotechnol., 2009, vol. 83, pp. 465–475.

    Article  PubMed  CAS  Google Scholar 

  83. Chadhain, S.M.N., Moritz, E.M., Kim, E., and Zylstra, G.J., Identifcation, Cloning, and Characterization of a Multicomponent Biphenyl Dioxygenase from Sphingobium yanoikuyae B1, J. Ind. Microbiol. Biotechnol., 2007, vol. 34, pp. 605–613.

    Article  PubMed  CAS  Google Scholar 

  84. Jouanneau, Y., Meyer, C., Jakoncic, J., Stojanoff, V., and Gaillard, J., Characterization of a Naphthalene Dioxygenase Endowed with an Exceptionally Broad Substrate Specificity toward Polycyclic Aromatic Hydrocarbons, Biochemistry, 2006, vol. 45, pp. 12380–12391.

    Article  PubMed  CAS  Google Scholar 

  85. Kauppi, B., Lee, K., Carredano, E., Parales, R.E., Gibson, D.T., Eklund, H., and Ramaswamy, S., Structure of an Aromatic-Ring-Hydroxylating Dioxygenase-Naphthalene 1,2-Dioxygenase, Structure, 1998, vol. 6, pp. 571–586.

    Article  PubMed  CAS  Google Scholar 

  86. Gakhar, L., Malik, Z.A., Allen, C.C., Lipscomb, D.A., Larkin, M.J., and Ramaswamy, S., Structure and Increased Thermostability of Rhodococcus sp. Naphthalene 1,2-Dioxygenase, J. Bacteriol., 2005, vol. 187, pp. 7222–7231.

    Article  PubMed  CAS  Google Scholar 

  87. Ferraro, D.J., Brown, E.N., Yu, C.-L., Parales, R.E., Gibson, D.T., and Ramaswamy, S., Structural Investigations of the Ferredoxin and Terminal Oxygenase Components of the Biphenyl 2,3-Dioxygenase from Sphingobium yanoikuyae B1, BMC Structural Biol., 2007, vol. 7, p. 10.

    Article  CAS  Google Scholar 

  88. Jakoncic, J., Jouanneau, Y., Meyer, C., and Stojanoff, V., The Catalytic Pocket of the Ring-Hydroxylating Dioxygenase from Sphingomonas CHY-1, Biochem. Biophys. Res. Commun., 2007, vol. 352, pp. 861–866.

    Article  PubMed  CAS  Google Scholar 

  89. Kweon, O., Kim, S.-J., Freeman, J.P., Song, J., Baek, S., and Cerniglia, C.E., Substrate Specificity and Structural Characteristics of the Novel Rieske Nonheme Iron Aromatic Ring-Hydroxylating Oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1, mBio, 2010, vol. 1. doi: 10.1128/mBio.00135-10

  90. Resnick, S.M., Lee, K., and Gibson, D.T., Diverse Reactions Catalyzed by Naphthalene Dioxygenase from Pseudomonas sp. Strain NCIB 9816, J. Ind. Microbiol., 1996, vol. 17, pp. 438–457.

    Article  CAS  Google Scholar 

  91. Pinyakong, O., Habe, H., Kouzuma, A., Nojiri, H., Yamane, H., and Omori, T., Isolation and Characterization of Genes Encoding Polycyclic Aromatic Hydrocarbon Dioxygenase from Acenaphthene and Acenaphthylene Degrading Sphingomonas sp. Strain A4, FEMS Microbiol. Lett., 2004, vol. 238, pp. 297–305.

    PubMed  CAS  Google Scholar 

  92. Krivobok, S., Kuony, S., Meyer, C., Louwagie, M., Willison, J.C., and Jouanneau, Y., Identification of Pyrene-Induced Proteins in Mycobacterium sp. Strain 6PY1: Evidence for Two Ring-Hydroxylating Dioxygenases, J. Bacteriol., 2003, vol. 185, pp. 3828–3841.

    Article  PubMed  CAS  Google Scholar 

  93. Ferraro, D.J., Okerlund, A.L., Mowers, J.C., and Ramaswamy, S., Structural Basis for Regioselectivity and Stereoselectivity of Product Formation by Naphthalene 1,2-Dioxygenase, J. Bacteriol., 2006, vol. 188, pp. 6986–6994.

    Article  PubMed  CAS  Google Scholar 

  94. Kim, S.-J., Kweon, O., Freeman, J.P., Jones, R.C., Adjei, M.D., Jhoo, J.-W., Edmondson, R.D., and Cerniglia, C.E., Molecular Cloning and Expression of Genes Encoding a Novel Dioxygenase Involved in Low- and High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation in Mycobacterium vanbaalenii PYR-1, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1045–1054.

    Article  PubMed  CAS  Google Scholar 

  95. Boyd, D.R. and Bugg, T.D.H., Arene cis-Dihydrodiol Formation: From Biology to Application, Org. Biomol. Chem., 2006, vol. 4, pp. 181–192.

    Article  PubMed  CAS  Google Scholar 

  96. Kacser, H. and Burns, J.A., The Control of Flux, Symp. Soc. Exp. Biol., 1973, vol. 27, pp. 65–104.

    PubMed  CAS  Google Scholar 

  97. Westerhoff, H.V. and van Dam, K., Thermodynamics and Control of Biological Free-Energy Transduction, Amsterdam: Elsevier, 1987.

    Google Scholar 

  98. Cornish-Bowden, A., Fundamentals of Enzyme Kinetics, 3rd ed., London: Portland, 2004.

    Google Scholar 

  99. Dimitriou-Christidis, P., Autenrieth, R.L., McDonald, T.J., and Desai, A.M., Measurement of Biodegradability Parameters for Single Unsubstituted and Methylated Polycyclic Aromatic Hydrocarbons in Liquid Bacterial Suspensions, Biotechnol. Bioeng., 2007, vol. 97, pp. 922–932.

    Article  PubMed  CAS  Google Scholar 

  100. Baboshin, M.A. and Golovleva, L.A., Multisubstrate Kinetics of PAH Mixture Biodegradation: Analysis in the Double-Logarithmic Plot, Biodegradation, 2011, vol. 22, pp. 13–23.

    Article  PubMed  CAS  Google Scholar 

  101. Knightes, C.D. and Peters, C.A., Aqueous Phase Biodegradation Kinetics of 10 PAH Compounds, Environ. Eng. Sci., 2003, vol. 20, pp. 207–218.

    Article  CAS  Google Scholar 

  102. Stringfellow, W.T. and Aitken, M.D., Competitive Metabolism of Naphthalene, Methylnaphthalene and Fluorene by Phenanthrene-Degrading Pseudomonads, Appl. Environ. Microbiol., 1995, vol. 61, pp. 357–362.

    PubMed  CAS  Google Scholar 

  103. Guha, S., Peters, C.A., and Jaffé, P.R., Multisubstrate Biodegradation Kinetics of Naphthalene, Phenanthrene, and Pyrene Mixtures, Biotechnol. Bioeng., 1999, vol. 65, pp. 491–499.

    Article  PubMed  CAS  Google Scholar 

  104. Lotfabad, S.K. and Gray, M.R., Kinetics of Biodegradation Mixtures of Polycyclic Aromatic Hydrocarbons, Appl. Microbiol. Biotechnol., 2002, vol. 60, pp. 361–366.

    Article  PubMed  CAS  Google Scholar 

  105. Knightes, C.D. and Peters, C.A., Multisubstrate Biodegradation Kinetics for Binary and Complex Mixtures of Polycyclic Aromatic Hydrocarbons, Environ. Toxicol. Chem., 2006, vol. 25, pp. 1746–1756.

    Article  PubMed  CAS  Google Scholar 

  106. Dimitriou-Christidis, P. and Autenrieth, R.L., Kinetics of Biodegradation of Binary and Ternary Mixtures of PAHs, Biotechnol. Bioeng., 2007, vol. 97, pp. 788–800.

    Article  PubMed  CAS  Google Scholar 

  107. Desai, A.M., Autenrieth, R.L., Dimitriou-Christidis, P., and McDonald, T.J., Biodegradation Kinetics of Select Polycyclic Aromatic Hydrocarbon (PAH) Mixtures by Sphingomonas paucimobilis EPA505, Biodegradation, 2008, vol. 19, pp. 223–233.

    Article  PubMed  CAS  Google Scholar 

  108. Peng, R.-H., Xiong, A.-S., Xue, Y., Fu, X.-Y., Gao, F., Zhao, W., Tian, Y.-S., and Yao, Q.-H., Microbial Biodegradation of Polyaromatic Hydrocarbons, FEMS Microbiol. Rev., 2008, vol. 32, pp. 927–955.

    Article  PubMed  CAS  Google Scholar 

  109. Seo, J.-S., Keum, Y.-S., and Li, Q.X., Bacterial Degradation of Aromatic Compounds, Int. J. Environ. Res. Public Health, 2009, vol. 6, pp. 278–309.

    Article  PubMed  CAS  Google Scholar 

  110. Kanaly, R.A. and Harayama, S., Advances in the Field of High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Biodegradation by Bacteria, Microb. Biotechnol., 2010, vol. 3, pp. 136–164.

    Article  PubMed  CAS  Google Scholar 

  111. VanBriesen, J.M. and Rittmann, B.E., Mathematical Description of Microbiological Reactions Involving Intermediates, Biotechnol. Bioeng., 2000, vol. 67, pp. 35–52.

    Article  PubMed  CAS  Google Scholar 

  112. Baboshin, M.A. and Golovleva, L.A., Characterization of Hydrophobic Organic Contaminant Biodegradation by COD Analysis, Int. Biodeterior. Biodegr., 2011, vol. 65, pp. 883–889.

    Article  CAS  Google Scholar 

  113. Bouchez, M., Blanchet, D., and Vandecasteele, J.-P., The Microbiological Fate of Polycyclic Aromatic Hydrocarbons: Carbon and Oxygen Balances for Bacterial Degradation of Model Compounds, Appl. Microbiol. Biotechnol., 1996, vol. 45, pp. 556–561.

    Article  PubMed  CAS  Google Scholar 

  114. Annweiler, E., Richnow, H.H., Antranikian, G., Hebenbrock, S., Garms, C., Franke, S., Franke, W., and Michaelis, W., Naphthalene Degradation and Incorporation of Naphthalene-Derived Carbon into Biomass by the Thermophile Bacillus thermoleovorans, Appl. Environ. Microbiol., 2000, vol. 66, pp. 518–523.

    Article  PubMed  CAS  Google Scholar 

  115. Kazunga, C. and Aitken, M.D., Products of Incomplete Metabolism of Pyrene by Polycyclic Aromatic Hydrocarbon-Degrading Bacteria, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1917–1922.

    Article  PubMed  CAS  Google Scholar 

  116. Kazunga, C., Aitken, M.D., Gold, A., and Sangaiah, R., Fluoranthene-2,3- and -1,5-Diones Are Novel Products from the Bacterial Transformation of Fluoranthene, Environ. Sci. Technol., 2001, vol. 35, pp. 917–922.

    Article  PubMed  CAS  Google Scholar 

  117. Lundstedt, S., White, P.A., Lemieux, C.L., Lynes, K.D., Lambert, I.B., Öberg, L., Haglund, P., and Tysklind, M., Sources, Fate, and Toxic Hazards of Oxygenated Polycyclic Aromatic Hydrocarbons (PAHs) at PAH-Contaminated Sites, AMBIO, 2007, vol. 36, pp. 475–485.

    Article  PubMed  CAS  Google Scholar 

  118. Kang, H., Hwang, S.Y., Kim, Y.M., Kim, E., Kim, Y.-S., Kim, S.-K., Kim, S.W., Cerniglia, C.E., Shuttleworth, K.L., and Zylstra, G.J., Degradation of Phenanthrene and Naphthalene by a Burkholderia Species Strain, Can. J. Microbiol., 2003, vol. 49, pp. 139–144.

    Article  PubMed  CAS  Google Scholar 

  119. Baboshin, M.A., Akimov, V.N., Baskunov, B.P., Born, T.L., Khan, S.U., and Golovleva, L.A., Conversion of Polycyclic Aromatic Hydrocarbons by Sphingomonas sp. VKM B-2434, Biodegradation, 2008, vol. 19, pp. 567–576.

    Article  PubMed  CAS  Google Scholar 

  120. Casellas, M., Grifoll, M., Sebate, J., and Solanas, A.M., Isolation and Characterization of a Fluorenone-Degrading Bacterial Strain and Its Role in Synergistic Degradation of Fluorene by a Consortium, Can. J. Microbiol., 1998, vol. 44, pp. 734–742.

    CAS  Google Scholar 

  121. Baboshin, M.A. and Golovleva, L.A., Increase of 1-Hydroxy-2-Naphthoic Acid Concentration as a Cause of Temporary Cessation of Growth for Arthrobacter sp. K3: Kinetic Analysis, Microbiology, 2009, vol. 78, pp. 180–186.

    Article  CAS  Google Scholar 

  122. Baboshin, M.A. and Golovleva, L.A., The Strategy of Strain Selection for a Mixed Culture Performing Rapid Conversion of a Mixture of Polyaromatic Compounds, Microbiology, 2010, vol. 79, pp. 73–82.

    Article  CAS  Google Scholar 

  123. Molina, M., Araujo, R., and Hodson, R.E., Cross-Induction of Pyrene and Phenanthrene in a Mycobacterium sp. Isolated from Polycyclic Aromatic Hydrocarbon Contaminated River Sediments, Can. J. Microbiol., 1999, vol. 45, pp. 520–529.

    PubMed  CAS  Google Scholar 

  124. Bouchez, M., Blanchet, D., and Vandecasteele, V.-P., Degradation of Polycyclic Aromatic Hydrocarbons by Pure Strains and by Defined Strain Associations: Inhibition Phenomena and Cometabolism, Appl. Microbiol. Biotechnol., 1995, vol. 43, pp. 156–164.

    Article  PubMed  CAS  Google Scholar 

  125. Juhasz, A.L. and Naidu, R., Bioremediation of High Molecular Weight Polycyclic Aromatic Hydrocarbons: A Review of Microbial Degradation of Benzo[a]pyrene, Int. Biodeterior. Biodegr., 2000, vol. 45, pp. 57–88.

    Article  CAS  Google Scholar 

  126. Boonchan, S., Britz, M.L., and Stanley, G.A., Degradation and Mineralization of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons by Defined Fungal Bacterial Cocultures, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  127. Kanaly, R.A., Bartha, R., Watanabe, K., and Harayama, S., Rapid Mineralization of Benzo[a]pyrene by a Microbial Consortium Growing on Diesel Fuel, Appl. Environ. Microbiol., 2000, vol. 66, pp. 4205–4211.

    Article  PubMed  CAS  Google Scholar 

  128. Bouchez, M., Blanchet, D., Bardin, V., Haeseler, F., and Vandecasteele, J.-P., Efficiency of Defined Strains and of Soil Consortia in the Biodegradation of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures, Biodegradation, 1999, vol. 10, pp. 429–435.

    Article  PubMed  CAS  Google Scholar 

  129. Odum, E.P., Basic Ecology Philadelphia: Saunders College, 1983.

    Google Scholar 

  130. Röling, W.F.M., van Breukelen, B.M., Bruggeman, F.J., and Westerhoff, H.V., Ecological Control Analysis: Being(s) in Control of Mass Flux and Metabolite Concentrations in Anaerobic Degradation Processes, Environ. Microbiol., 2007, vol. 9, pp. 500–511.

    Article  PubMed  CAS  Google Scholar 

  131. Rastogi, G. and Sani, R.K., Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment, in Microbes and Microbial Technology: Agricultural and Environmental Applications, Ahmad, I., Ahmad, F., and Pichtel, J., Eds., Springer, 2011, pp. 29–57.

  132. Jeon, C.O., Park, W., Padmanabhan, P., DeRito, C., Snape, J.R., and Madsen, E.L., Discovery of a Bacterium, with Distinctive Dioxygenase, that Is Responsible for in situ Biodegradation in Contaminated Sediment, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 13591–13596.

    Article  PubMed  CAS  Google Scholar 

  133. Yu, C.P. and Chu, K.H., A Quantitative Assay for Linking Microbial Community Function and Structure of a Naphthalene-Degrading Microbial Consortium, Environ. Sci. Technol., 2005, vol. 39, pp. 9611–9619.

    Article  PubMed  CAS  Google Scholar 

  134. Singleton, D.R., Powell, S.N., Sangaiah, R., Gold, A., Ball, L.M., and Aitken, M.D., Stable-Isotope Probing of Bacteria Capable of Degrading Salicylate, Naphthalene, or Phenanthrene in a Bioreactor Treating Contaminated Soil, Appl. Environ. Microbiol., 2005, vol. 71, pp. 1202–1209.

    Article  PubMed  CAS  Google Scholar 

  135. Singleton, D.R., Sangaiah, R., Gold, A., Ball, L.M., and Aitken, M.D., Identification and Quantification of Uncultivated Proteobacteria Associated with Pyrene Degradation in a Bioreactor Treating PAH Contaminated Soil, Environ. Microbiol., 2006, vol. 8, pp. 1736–1745.

    Article  PubMed  CAS  Google Scholar 

  136. Jones, M.D., Crandell, D.W., Singleton, D.R., and Aitken, M.D., Stable-Isotope Probing of the Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Guild in a Contaminated Soil, Environ. Microbiol., 2011, vol. 13, pp. 2623–2632.

    Article  PubMed  CAS  Google Scholar 

  137. Zhang, S., Wan, R., Wang, Q., and Xie, S., Identification of Anthracene Degraders in Leachate-Contaminated Aquifer Using Stable Isotope Probing, Int. Biodeterior. Biodegr., 2001, vol. 65, pp. 1224–1228.

    Article  CAS  Google Scholar 

  138. Singleton, D.R., Ramirez, L.G., and Aitken, M.D., Characterization of a Polycyclic Aromatic Hydrocarbon Degradation Gene Cluster in a Phenanthrene-Degrading Acidovorax Strain, Appl. Environ. Microbiol., 2009, vol. 75, pp. 2613–2620.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Golovleva.

Additional information

Original Russian Text © M.A. Baboshin, L.A. Golovleva, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 6, pp. 695–706.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baboshin, M.A., Golovleva, L.A. Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology 81, 639–650 (2012). https://doi.org/10.1134/S0026261712060021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712060021

Keywords

Navigation