, Volume 81, Issue 1, pp 98–108 | Cite as

Thermotolerant and thermophilic actinomycetes from soils of Mongolia desert steppe zone

  • A. I. Kurapova
  • G. M. ZenovaEmail author
  • I. I. Sudnitsyn
  • A. K. Kizilova
  • N. A. Manucharova
  • Zh. Norovsuren
  • D. G. Zvyagintsev
Experimental Articles


In the actinomycete complexes of Mongolian desert soils, thermotolerant and thermophilic actinomycetes were found in high abundance, exceeding that of the mesophilic forms. Among the thermotolerant members of the order Actinomycetales, Streptomyces, Micromonospora, Actinomadura, and Streptosporangium species were most widespread in desert soils. Experiments with soil microcosms demonstrated that thermophilic actinomycetes in desert soils grew, developed, and formed mycelia of the length comparable to that of the mesophilic forms of actinomycetes. Molecular biological investigation of the samples of desert steppe soils by denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) revealed members of the phylum Actinobacteria. FISH analysis revealed that the biomass of the metabolically active mycelial actinobacteria in the prokaryotic community of Mongolian desert soils exceeded that of the unicellular Actinobacteria.


thermotolerant and thermophilic actinomycetes metabolically active mycelial actinobacteria actinomycete complexes desert soils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalakutskii, L.V. and Agre, N.S., Razvitie aktinomitsetov (Development of Actinomycetes), Moscow: Nauka, 1977.Google Scholar
  2. 2.
    Jiang, C. and Xu, L., Actinomycete Diversity in Unusual Habitats, Actinomycetes, 1993, vol. 4, pp. 47–57.Google Scholar
  3. 3.
    Kim, S.B. and Goodfellow, M., Streptomyces thermospinisporus sp. nov., a Moderate Thermophilic Carboxydotrophic Streptomycete Isolated from Soil, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, no. 4, pp. 1225–1228.PubMedCrossRefGoogle Scholar
  4. 4.
    Zvyagintsev, D.G. and Zenova, G.M., Aktinomitsety zasolennykh i shchelochnykh pochv (Actinomycetes of Saline and Alkaline Soils), Moscow: Knizhnyi Dom Universitet, 2007.Google Scholar
  5. 5.
    Agre, N.S., Sistematika termofil’nykh aktinomitsetov (Systematics of Thermophilic Actinomycetes), Pushchino, 1986.Google Scholar
  6. 6.
    Stackebrandt, E., Rainey, F.A., and Ward-Rainey, N.L., Proposal for a New Hieraric Classification System, Actinobacteria classis nov., Int. J. Syst. Bacteriol., 1997, vol. 47, no. 2, pp. 479–491.CrossRefGoogle Scholar
  7. 7.
    Kim, B., Sahin, N., Minnikin, D.E., Zakrzewska-Czerwinska, J., Mordarski, M., and Goodfellow, M., Classification of Thermophilic Streptomycetes, Including the Description of Streptomyces thermoalcalitolerans sp. nov., Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 7–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Biology of the Prokaryotes, Lengeler, J.W., Drews, G., and Schlegel, H.G., Eds., Blackwell, 1999.Google Scholar
  9. 9.
    Dorzhgotov, D., Soils of Mongolia (Genesis, Systematics, Geography, Resources, and Application), Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Mosk. Gos. Univ., 1992.Google Scholar
  10. 10.
    Zenova, G.M., Pochvennye aktinomitsety redkikh rodov (Soil Actinomycetes of Rare Genera), Moscow: Mosk. Gos. Univ., 2000.Google Scholar
  11. 11.
    Hasezawa, M. and Takida, S., A Rapid Analysis for Chemical Grouping of Aerobic Actinomycetes, J. Gen. Appl. Microbiol., 1983, vol. 29, pp. 319–322.CrossRefGoogle Scholar
  12. 12.
    Bergey’s Manual of Systematic Bacteriology, Williams, S.T., Sharpe, V., and Holt, J.A., Eds., Baltimore: Williams and Wilkins, 1989, vol. 4.Google Scholar
  13. 13.
    Bergey’s Manual of Systematic Bacteriology, 8th ed., vol. 1–2, Holt, J.G., Ed, Baltimore-London: Williams and Wilkins, 1986.Google Scholar
  14. 14.
    Kroppenstedt, R. and Goodfellow, M., The Family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora, in The Prokaryotes, New York: Springer, 2006, pp. 682–724.CrossRefGoogle Scholar
  15. 15.
    Goodfellow, M. and Quintana, E., The Family Streptosporangiaceae, in The Prokaryotes, New York: Springer, 2006, pp. 725–753.CrossRefGoogle Scholar
  16. 16.
    Metody pochvennoi mikrobiologii i biokhimii (Methods in Soil Microbiology and Biochemistry), Moscow: Mosk. Gos. Univ., 1991, p. 303.Google Scholar
  17. 17.
    Ravenschlag, K., Sahm, K., and Amann, R., Quantitative Molecular Analysis of the Microbial Community in Marine Arctic Sediments (Svalbard), Appl. Environ. Microbiol., 2001, vol. 67, no. 1, pp. 387–395.PubMedCrossRefGoogle Scholar
  18. 18.
    Manucharova, N.A., Identifikatsiya metabolicheski aktivnykh kletok prokariot v pochvakh s primeneniem molekulyarno-biologicheskogo flyuorestsentno-mikroskopicheskogo metoda analiza fluorescence in situ hybridization (FISH) (Identification of Metabolically Active Cells of Prokaryotes in Soils Using Molecular Biological Analytical Method of Fluorescent in situ Hybridization (FIWSH)), Moscow: Universitet i shkola, 2008.Google Scholar
  19. 19.
    Pankratov, T.A., Belova, S.E., and Dedysh, S.N., Evaluation of the Phylogenetic Diversity of Prokaryotic Microorganisms in Sphagnum Peat Bogs by Means of Fluorescence in situ Hybridization (FISH), Microbiology, 2005, vol. 74, no. 6, pp. 722–728.CrossRefGoogle Scholar
  20. 20.
    Andreote, F.D., Mendes, R., Dini-Andreote, F., Rossetto, P.B., Labate, C.A., Pizzirani-Kleiner, A.A., van Elsas, J.D., Azevedo, J.L., and Welington, L.A., Transgenic Tobacco Revealing Altered Bacterial Diversity in the Rhizosphere during Early Plant Development, Antonie van Leeuwenhoek, 2008, vol. 93, pp. 415–424.PubMedCrossRefGoogle Scholar
  21. 21.
    Novinscak, A., Surette, C., Allain, C., and Filion, M., Application of Molecular Technologies to Monitor the Microbial Content of Biosolids and Composted Biosolids, Water Sci. Technol., 2008, vol. 57, no. 4, pp. 471–477.PubMedCrossRefGoogle Scholar
  22. 22.
    Muyzer, G., de Waal, E.C., and Uitterlinden, A.G., Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA, Appl. Environ. Microbiol., 1993, vol. 59, no. 3, pp. 695–700.PubMedGoogle Scholar
  23. 23.
    Kravchenko, I.K., Kizilova, A.K., Bykova, S.A., Men’ko, E.V., and Gal’chenko, V.F., Molecular Analysis of High-Affinity Methane-Oxidizing Enrichment Cultures Isolated from a Forest Biocenosis and Agrocenoses, Microbiology, 2010, vol. 79, no. 1, pp. 106–114.CrossRefGoogle Scholar
  24. 24.
    Okoro, C.K., Brown, R., Jones, A.L., Andrews, B.A., Asenjo, J.A., Goodfellow, M., and Bull, A.T., Diversity of Culturable Actinomycetes in Hyper-Arid Soils of the Atacama Desert, Chile, Antonie van Leeuwenhoek, 2009, vol. 95, pp. 121–133.PubMedCrossRefGoogle Scholar
  25. 25.
    Dobrovol’skaya, T.G., Struktura bakterial’nykh soobshchestv pochv (Structure of Soil Microbial Communities), Moscow: IKTs “Akademkniga”, 2002.Google Scholar
  26. 26.
    Garrity, G.M., Heimbuch, B.K., and Gagliardi, M., Isolation of Zoosporogenous Actinomycetes from Desert Soils, J. Industr. Microbiol., 1996, vol. 17, nos. 3–4, pp. 260–267.Google Scholar
  27. 27.
    Common, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C., and Ponce, A., Bacterial Diversity in Hyperarid Atacama Desert Soils, J. Geophys. Res., 2007, vol. 112 (G4). pp. 112–130.Google Scholar
  28. 28.
    Chanal, A., Chapon, V., Benzerara, K., Achouak, W., Barras, F., and Heulin, T., The Desert of Tataouine: An Extreme Environment that Hosts a Wide Diversity of Microorganisms and Radiotolerant Bacteria, Environ. Microbiol., 2006, vol. 8, no. 3, pp. 514–525.PubMedCrossRefGoogle Scholar
  29. 29.
    Zvyagintsev, D.G., Zenova, G.M., Doroshenko, E.A., Gryadunova, A.A., Gracheva, T.A., and Sudnitsyn, I.I., Actinomycete Growth in Conditions of Low Moisture, Biol. Bull., 2007, vol. 34, no. 3, pp. 242–247.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. I. Kurapova
    • 1
  • G. M. Zenova
    • 1
    Email author
  • I. I. Sudnitsyn
    • 1
  • A. K. Kizilova
    • 2
  • N. A. Manucharova
    • 1
  • Zh. Norovsuren
    • 3
  • D. G. Zvyagintsev
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of BiologyMongolian Academy of SciencesUlan BatorMongolia

Personalised recommendations