Advertisement

Microbiology

, 80:664 | Cite as

Characterization of propionic acid bacteria using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry

  • L. I. Vorob’eva
  • F. M. Khasaeva
  • N. V. Vasilyuk
  • E. Trenquil
Experimental Articles

Abstract

It was shown that matrix-assisted laser desorption/ionization (MALDI) mass spectrometry could be used for the diagnostic characterization of propionic acid bacteria (PABs). The spectra of proteins (whole PAB cells) with a molecular mass of 3000 to 11 000 were obtained and analyzed using three matrices: sinapinic (SA), 2,5-dihydroxibenzoic (DHB), and α-cyano-4-hydroxycinnamic acid (HCCA). The MALDI spectra of PAB revealed the protein peaks characteristic of (1) the genus Propionibacterium (3496, 5386, 5605, 10 470), (2) the groups of species sharing the common composition of their cell walls and fatty acids, and (3) a species (four species were investigated). Exemplified by the P. shermanii strains (the collection and mutant ones) producing and not producing vitamin B12, the possibility of using MALDI profiles for strain differentiation was confirmed. The MALDI profiles of the propionic acid cocci of the genus Luteococcus differ substantially from the profiles of PAB strains of the genus Propionibacterium, which is an additional proof of the validity of whole-cell MALDI spectra for generic differentiation of bacteria. Our investigation shows that the bacterial groups determined using the MALDI profiles correlate with the phylogenetic 16S rRNA gene groups, thus demonstrating the high resolution of this method for the differentiation of intraspecific differences (subspecies, strains).

Keywords

propionic acid bacteria cocci MALDI spectra MALDI-TOF matrices proteins biomarker molecules 

References

  1. 1.
    Anhalt, J.P. and Fenselau, C., Identification of Bacteria Using Mass Spectrometry, Anal. Chem., 1975, vol. 47, pp. 219–225.CrossRefGoogle Scholar
  2. 2.
    Holland, R.D., Wilkes, J.G., Rafii, F., Sutherland, J.B., Persons, C.C., Voorhees K.J., and Lay, J.O., Jr., Rapid Identification of Intact Whole Bacteria Based on Spectral Patterns Using Matrix-Assisted Lazer Desorbtion/Ionization with Time-of-Flight Mass Spectrometry, Rapid Commun. Mass Spectrom., 1996, vol. 10, pp. 1227–1232.PubMedCrossRefGoogle Scholar
  3. 3.
    Claydon, M.A., Davey, S.N., Edwards-Jones, V., and Gordon, D.B., The Rapid Identification of Intact Microorganisms Using Mass Spectrometry, Nature Biotechnol., 1996, vol. 10, pp. 1992–1996.Google Scholar
  4. 4.
    Welham, K., Domin, M., Scannel, D., Cohen, E., and Ashton, D., The Characterization of Microorganisms by Matrix-Assisted Lazer Desorbtion/Ionization Time-of-Flight Mass Spectrometry Rapid Commun. Mass Spectrom., 1998, vol. 12, pp. 176–180.PubMedCrossRefGoogle Scholar
  5. 5.
    Liyanage, R. and Lay, J.O. Jr., An Introduction to MALDI-TOF MS, in Identification of Microorganisms by Mass Spectrometry, Wilkins, Ch. and Lay, J.O. Jr., Eds., New Jersey: Wiley, 2006, pp. 39–60.CrossRefGoogle Scholar
  6. 6.
    Jones, J.J., Stump, M.J., Fleming, R.C., Lay, J.O., and Wilkins, C.L., Investigation of MALDI-TOF and FTMS Techniques for Analysis of Escherichia coli Whole Cells, Anal. Chem., 2003, vol. 75, pp. 1340–1347.PubMedCrossRefGoogle Scholar
  7. 7.
    Wahl, K.L. and Valentine, N.B., Analysis of Whole Bacterial Cells by Flow Field-Flow Fractionation and Matrix-Assisted Lazer Desorption/Ionization Time-of-Flight Mass Spectrometry, Anal. Chem., 2003, vol. 75, pp. 2746–2752.PubMedCrossRefGoogle Scholar
  8. 8.
    Sauer, S. and Kliem, M., Mass Spectrometry Tools for the Classification and Identification of Bacteria, Nature Rev. Microbiol., 2010, vol. 8, no. 81, pp. 74–81.CrossRefGoogle Scholar
  9. 9.
    Vargha, M., Takats, Z., Konopka, A., and Nakatsu, C.H., Optimization of MALDI-TOF MS for Strain Level Differentiation of Arthrobacter Isolates, Microbiol. Meth., 2006, vol. 66, pp. 399–409.CrossRefGoogle Scholar
  10. 10.
    Dickinson, D.N., La Duc, M.T., Haskins, W.E., Gornishkin, I., Winefordner, J.D., Powel D.H., and Venkateswaran K., Species Differentiation of a Diverse Suite of Bacillus Spores by Mass Spectrometry-Based Protein Profiling, Appl. Environ. Microbiol. 2004, vol. 70, pp. 475–482.PubMedCrossRefGoogle Scholar
  11. 11.
    Hettick, J.M., Kashon, M.L., Simpson, J.P., Siegel, P.D., Mazurek, G.H., and Weissman, D.N., Proteomic Profiling of Intact Mycobacteria by Matrix-Assisted Lazer Desorption/Ionization Time-Of-Flight Mass Spectrometry, Anal. Chem., 2004, vol. 76, pp. 5769–5776.PubMedCrossRefGoogle Scholar
  12. 12.
    Dieckman, R., Graeber, I., Kaesler, I., Szewzyk, U., and von Dohren, H. Rapid Screening and Dereplication of Bacteria Isolates from Marine Sponges of the Sula Ridge by Intact-Cell-MALDI-TOF Mass Spectrometry, Appl. Microbiol. Biotechnol., 2005, vol. 67, pp. 539.CrossRefGoogle Scholar
  13. 13.
    Vorob’eva, L.I., Propionovokislye bakterii (Propionic Acid Bacteria), Moscow: Mosk. Gos. Univ., 1995.Google Scholar
  14. 14.
    Smole, S.C., Ring, L.A., Leopold, P.E., and Arbeit, R.D., Sample Preparation of Gram-Positive Bacteria for Identification by Matrix-Assisted Lazer Desorption/Ionization Time-Of-Flight Mass Spectrometry, J. Microbiol. Methods., 2002, vol. 48, pp. 107–115.PubMedCrossRefGoogle Scholar
  15. 15.
    Evason, D.J., Claydon, M.A., and Gordon, D.B., Exploring the Limits of Bacterial Identification by Intact Cell-Mass Spectrometry, J. Amer. Soc. Mass Spectrom., 2001, vol. 12, pp. 49–54.CrossRefGoogle Scholar
  16. 16.
    Williams, T.L., Andrzejewski, D., Lay, J.O., and Musser, S.M., Experimental Factors Affecting the Quality and Reproducibility of MALDI-TOF Mass Spectra Obtained from Whole Bacteria Cells, J. Amer. Mass Spectrom., 2003, vol. 14, pp. 342–351.CrossRefGoogle Scholar
  17. 17.
    Cummins, C.S. and Johnson, J.L., The genus Propionibacterium, in The Procaryotes, Ballows, A. Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H., Eds., vol. 1, ch. 37, New York: Springer, 1992, pp. 834–849.Google Scholar
  18. 18.
    Vorobjeva, L.I., Propionibacteria, Dordrecht: Kluwer Academic, 1999.Google Scholar
  19. 19.
    Van Nieuwholtz, J., A Taxonomic Re-Evaluation of Propionibacterium coccoides, Ph. D. Thesis, Dep. Microbiol. Biochem., University of the Orange Free State, Bloemfontein, South Africa. 1998.Google Scholar
  20. 20.
    Arnold, R.J. and Reilly, J.P. Fingerprint Matching of Escherichia coli Strains with Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry of Whole Cells Using a Modified Correlation Approach, Rapid Commun. Mass Spectrom., 1998, vol. 12, pp. 630–636.PubMedCrossRefGoogle Scholar
  21. 21.
    Edwards-Jones, V., Claydon, M.A., Evason D.J., Walker, J., Fox, A.J., and Gordon, D.B., Rapid Discrimination between Methicilline-Sensitive and Methicilline-Resistant Staphylococcus aureus by Intact Cell Mass Spectrometry, J. Med. Microbiol., 2000, vol. 49, pp. 295–300.PubMedGoogle Scholar
  22. 22.
    Vorob’eva, L.I., Tourova, T.P., Kraeva, N.I., and Alekseeva, M.A., Propionic Acid Bacteria and Their Taxonomic Position, Mikrobiologiya, 1983, vol. 52, no. 3, pp. 465–471.Google Scholar
  23. 23.
    Namura, T., Nakeuchi, M., and Yokota, A. Luteococcus japonicus gen nov., sp.nov., a New Gram-Positive Coccus with LL-Diaminopimelic Acid in the Cell Wall, Int.J. Syst. Bacteriol., 1994, vol. 44, pp. 348–356.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. I. Vorob’eva
    • 1
  • F. M. Khasaeva
    • 1
  • N. V. Vasilyuk
    • 1
  • E. Trenquil
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Carnegie-Mellon UniversityPittsburghUSA

Personalised recommendations