Microbiology

, Volume 80, Issue 1, pp 1–9 | Cite as

Allolysis in bacteria

Review

Abstract

The review deals with the phenomenon of allolysis, i.e., lysis of a part of a bacterial population induced by a group of epigenetically differentiated cells of the same species or phylotype. Allolysis is best studied in two species of gram-positive bacteria, Streptococcus pneumoniae and Bacillus subtilis. In S. pneumoniae, allolysis is associated with the onset of the competence stage, while in B. subtilis it is associated with transition to the stage of spore formation. The mechanisms of allolysis are considered, as well as its possible role in the populational and symbiotic relationships of bacterial cells. The relation between allolysis ant the programmed death of a part of the cells within a bacterial population (apoptosis) is discussed.

Keywords

allolysis pneumococci competence cannibalism bacilli spore formation apoptosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Claverys, J.P., Prudhomme, M., and Martin, B., Induction of Competence Regulons as a General Response ao Stress in Gram-Positive Bacteria, Annu. Rev. Microbiol., 2006, vol. 60, pp. 451–475.PubMedCrossRefGoogle Scholar
  2. 2.
    Petersen, F.C., Tao, L., and Scheie, A.A., DNA Binding-Uptake System: a Link Between Cell-to-Cell Communication and Biofilm Formation, J. Bacteriol., 2005, vol. 187, no. 13, pp. 4392–4000.PubMedCrossRefGoogle Scholar
  3. 3.
    Moscoso, M., Garca, E., and López, R., Biofilm Formation by Streptococcus pneumoniae: Role of Choline, Extracellular DNA, and Capsular Polysaccharide in Microbial Accretion, J. Bacteriol., 2006, vol. 188, no. 22, pp. 7785–7795.PubMedCrossRefGoogle Scholar
  4. 4.
    Jedrzejas, M.J., Pneumococcal Virulence Factors: Structure and Function, Microbiol. Mol. Biol. Rev., 2001, vol. 65, no. 2, pp. 187–207.PubMedCrossRefGoogle Scholar
  5. 5.
    Bogaert, D., De Groot, R., and Hermans, P.W., Streptococcus pneumoniae Colonisation: the Key to Pneumococcal Disease, Lancet Infect. Dis., 2004, vol. 4, no. 3, pp. 144–154.PubMedCrossRefGoogle Scholar
  6. 6.
    Dawid, S., Roche, A.M., and Weiser, J.N., The blp Bacteriocins of Streptococcus pneumoniae Mediate Intraspecies Competition Both in Vitro and in Vivo, Infect. Immun., 2007, vol. 75, no. 1, pp. 443–451.PubMedCrossRefGoogle Scholar
  7. 7.
    Romero, P., López, R., and GarcHa, E., Key Role of Amino Acid Residues in the Dimerization and Catalytic Activation of the Autolysin LytA, an Important Virulence Factor in Streptococcus pneumoniae, J. Biol. Chem., 2007, vol. 282, no. 24, pp. 17729–17737.PubMedCrossRefGoogle Scholar
  8. 8.
    García, P., Paz, González, M., García, E., García, J.L., and López, R., The Molecular Characterization of the First Autolytic Lysozyme of Streptococcus pneumoniae Reveals Evolutionary Mobile Domains, Mol. Microbiol., 1999, vol. 33, no. 1, pp. 128–138.PubMedCrossRefGoogle Scholar
  9. 9.
    Kausmally, L., Johnsborg, O., Lunde, M., Knutsen, E., and Hövarstein, L.S., Choline-Binding Protein D (CbpD) in Streptococcus pneumoniae Is Essential for Competence-Induced Cell Lysis, J. Bacteriol., 2005, vol. 187, no. 13, pp. 4338–4345.PubMedCrossRefGoogle Scholar
  10. 10.
    Pestova, E.V., Hövarstein, L.S., and Morrison, D.A., Regulation of Competence for Genetic Transformation in Streptococcus pneumoniae by an Auto-Induced Peptide Pheromone and a Two-Component Regulatory System, Mol. Microbiol., 1996, vol. 21, no. 4, pp. 853–862.PubMedCrossRefGoogle Scholar
  11. 11.
    Campbell, E.A., Choi, S.Y., and Masure, H.R., A Competence Regulon in Streptococcus pneumoniae Revealed by Genomic Analysis, Mol. Microbiol., 1998, vol. 27, no. 5, pp. 929–939.PubMedCrossRefGoogle Scholar
  12. 12.
    Alloing, G., Martin, B., Granadel, C., and Claverys, J.P., Development of Competence in Streptococcus pneumonaie: Pheromone Autoinduction and Control of Quorum Sensing by the Oligopeptide Permease, Mol. Microbiol., 1998, vol. 29, no. 1, pp. 75–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Prozorov, A.A., Competence Pheromones in Bacteria, Mikrobiologiya, 2001, vol. 70, no. 1, pp. 5–14 [Microbiology (Engl. Transl.), vol. 70, no. 1, pp. 1–9].Google Scholar
  14. 14.
    Peterson, S.N., Sung, C.K., Cline, R., Desai, B.V., Snesrud, E.C., Luo, P., Walling, J., Li, H., Mintz, M., Tsegaye, G., Burr, P.C., Do, Y., Ahn, S., Gilbert, J., Fleischmann, R.D., and Morrison, D.A., Identification of Competence Pheromone Responsive Genes in Streptococcus pneumoniae by Use of DNA Microarrays, Mol. Microbiol., 2004, vol. 51, no. 4, pp. 1051–1070.PubMedCrossRefGoogle Scholar
  15. 15.
    Pozzi, G., Masala, L., Iannelli, F., Manganelli, R., Havarstein, L.S., Piccoli, L., Simon, D., and Morrison, D.A., Competence for Genetic Transformation in Encapsulated Strains of Streptococcus pneumoniae: Two Allelic Variants of the Peptide Pheromone, J. Bacteriol., 1996, vol. 178, no. 20, pp. 6087–6090.PubMedGoogle Scholar
  16. 16.
    Håvarstein, L.S., Hakenbeck, R., and Gaustad, P., Natural Competence in the Genus Streptococcus: Evidence That Streptococci Can Change Pherotype by Interspecies Recombinational Exchanges, J. Bacteriol., 1997, vol. 179, no. 21, pp. 6589–6594.PubMedGoogle Scholar
  17. 17.
    Håvarstein, L.S., Gaustad, P., Nes, I.F., and Morrison, D.A., Identification of the Streptococcal Competence-Pheromone Receptor, Mol. Microbiol., 1996, vol. 21, no. 4, pp. 863–869.PubMedCrossRefGoogle Scholar
  18. 18.
    Ottolenghi, E. and Hotchkiss, R.D., Appearance of Genetic Transforming Activity in Pneumococcal Cultures, Science, 1960, vol. 132, pp. 1257–1258.PubMedGoogle Scholar
  19. 19.
    Prozorov, A.A., Transformatsiya u bakterii (Transformation in Bacteria), Moscow: Nauka, 1988.Google Scholar
  20. 20.
    Steinmoen, H., Knutsen, E., and Håvarstein, L.S., Induction of Natural Competence in Streptococcus pneumoniae Triggers Lysis and DNA Release from a Subfraction of the Cell Population, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 11, pp. 7681–7686.PubMedCrossRefGoogle Scholar
  21. 21.
    Steinmoen, H., Teigen, A., and Håvarstein, L.S., Competence-Induced Cells of Streptococcus pneumoniae Lyse Competence-Deficient Cells of the Same Strain During Cocultivation, J. Bacteriol., 2003, vol. 185, no. 24, pp. 7176–7183.PubMedCrossRefGoogle Scholar
  22. 22.
    Moscoso, M. and Claverys, J.P., Release of DNA into the Medium by Competent Streptococcus pneumoniae: Kinetics, Mechanism and Stability of the Liberated DNA, Mol. Microbiol., 2004, vol. 54, no. 3, pp. 783–794.PubMedCrossRefGoogle Scholar
  23. 23.
    Guiral, S., Mitchell, T.J., Martin, B., and Claverys, J.P., Competence-Programmed Predation of Noncompetent Cells in the Human Pathogen Streptococcus pneumoniae: Genetic Requirements, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 24, pp. 8710–8715.PubMedCrossRefGoogle Scholar
  24. 24.
    Håvarstein, L.S., Martin, B., Johnsborg, O., Granadel, C., and Claverys, J.P., New Insights Into the Pneumococcal Fratricide: Relationship to Clumping and Identification of a Novel Immunity Factor, Mol. Microbiol., 2006, vol. 59, no. 4, pp. 1297–1307.PubMedCrossRefGoogle Scholar
  25. 25.
    Claverys, J.P. and Håvarstein, L.S., Cannibalism and Fratricide: Mechanisms and Raisons d’être, Nat. Rev. Microbiol., 2007, vol. 5, no. 3, pp. 219–229.PubMedCrossRefGoogle Scholar
  26. 26.
    Claverys, J.P., Martin, B., and Håvarstein, L.S., Competence-Induced Fratricide in Streptococci, Mol. Microbiol., 2007, vol. 64, no. 6, pp. 1423–1433.PubMedCrossRefGoogle Scholar
  27. 27.
    Martner, A., Dahlgren, C., Paton, J.C., and Wold, A.E., Pneumolysin Released During Streptococcus pneumoniae Autolysis Is a Potent Activator of Intracellular Oxygen Radical Production in Neutrophils, Infect. Immun., 2008, vol. 76, no. 9, pp. 4079–4087.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnsborg, O., Eldholm, V., Bjørnstad, M.L., and Håvarstein, L.S., A Predatory Mechanism Dramatically Increases the Efficiency of Lateral Gene Transfer in Streptococcus pneumoniae and Related Commensal Species, Mol. Microbiol., 2008, vol. 69, no. 1 P, pp. 245–253.PubMedCrossRefGoogle Scholar
  29. 29.
    Henriques-Normark, B., Blomberg, C., Dagerhamn, J., Bättig, P., and Normark, S., The Rise and Fall of Bacterial Clones: Streptococcus pneumoniae, Nat. Rev. Microbiol., 2008, vol. 6, no. 11, pp. 827–837.PubMedCrossRefGoogle Scholar
  30. 30.
    Gilmore, M.S. and Haas, W., The Selective Advantage of Microbial Fratricide, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 24, pp. 8401–8402.PubMedCrossRefGoogle Scholar
  31. 31.
    Kreth, J., Merritt, J., Shi, W., and Qi, F., Co-Ordinated Bacteriocin Production and Competence Evelopment: a Possible Mechanism for Taking up DNA from Neighbouring Species, Mol. Microbiol., 2005, vol. 57, no. 2, pp. 392–404.PubMedCrossRefGoogle Scholar
  32. 32.
    Hilbert, D.W. and Piggot, P.J., Compartmentalization of Gene Expression During Bacillus subtilis Spore Formation, Microbiol. Mol. Biol. Rev., 2004, vol. 68, no. 2, pp. 234–262.PubMedCrossRefGoogle Scholar
  33. 33.
    Dworkin, J. and Losick, R., Developmental Commitment in a Bacterium, Cell, 2005, vol. 121, no. 3, pp. 401–409.PubMedCrossRefGoogle Scholar
  34. 34.
    Molle, V., Fujita, M., Jensen, S.T., Eichenberger, P., González-Pastor, J.E., Liu, J.S., and Losick, R., The Spo0A Regulon of Bacillus subtilis, Mol. Microbiol., 2003, vol. 50, no. 5, pp. 1683–1701.PubMedCrossRefGoogle Scholar
  35. 35.
    Fawcett, P., Eichenberger, P., Losick, R., and Youngman, P., The Transcriptional Profile of Early to Middle Sporulation in Bacillus subtilis, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 14, pp. 8063–8068.PubMedCrossRefGoogle Scholar
  36. 36.
    Bischofs, I.B., Hug, J.A., Liu, A.W., Wolf, D.M., and Arkin, A.P., Complexity in Bacterial Cell-Cell Communication: Quorum Signal Integration and Subpopulation Signaling in the Bacillus subtilis Phosphorelay, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 16, pp. 6459–6464.PubMedCrossRefGoogle Scholar
  37. 37.
    Fujita, M., González-Pastor, J.E., and Losick, R., High- and Low-Threshold Genes in the Spo0A Regulon of Bacillus subtilis, J. Bacteriol., 2005, vol. 187, no. 4, pp. 1357–1368.PubMedCrossRefGoogle Scholar
  38. 38.
    González-Pastor, J.E., Hobbs, E.C., and Losick, R., Cannibalism by Sporulating Bacteria, Science, 2003, vol. 301, no. 5632, pp. 510–513.PubMedCrossRefGoogle Scholar
  39. 39.
    Smith, T.J., Blackman, S.A., and Foster, S.J., Autolysins of Bacillus subtilis: Multiple Enzymes with Multiple Functions, Microbiology (UK), 2000, vol. 146.Google Scholar
  40. 40.
    Ellermeier, C.D., Hobbs, E.C., Gonzalez-Pastor, J.E., and Losick, R., A Three-Protein Signaling Pathway Governing Immunity to a Bacterial Cannibalism Toxin, Cell, 2006, vol. 124, no. 3, pp. 549–559.PubMedCrossRefGoogle Scholar
  41. 41.
    López, D., Vlamakis, H., Losick, R., and Kolter, R., Cannibalism Enhances Biofilm Development in Bacillus subtilis, Mol. Microbiol., 2009, vol. 74, no. 3, pp. 609–618.PubMedCrossRefGoogle Scholar
  42. 42.
    Branda, S.S., Chu, F., Kearns, D.B., Losick, R., and Kolter, R., A Major Protein Component of the Bacillus subtilis Biofilm Matrix, Mol. Microbiol., 2006, vol. 59, no. 4, pp. 1229–1238.PubMedCrossRefGoogle Scholar
  43. 43.
    Vlamakis, H., Aguilar, C., Losick, R., and Kolter, R., Control of Cell Fate by the Formation of an Architecturally Complex Bacterial Community, Genes Dev., 2008, vol. 22, no. 7, pp. 945–953.PubMedCrossRefGoogle Scholar
  44. 44.
    Allenby, N.E., Watts, C.A., Homuth, G., Prágai, Z., Wipat, A., Ward, A.C., and Harwood, C.R., Phosphate Starvation Induces the Sporulation Killing Factor of Bacillus subtilis, J. Bacteriol., 2006, vol. 188, no. 14, pp. 5299–5303.PubMedCrossRefGoogle Scholar
  45. 45.
    Nandy, S.K., Bapat, P.M., and Venkatesh, K.V., Sporulating Bacteria Prefers Predation to Cannibalism in Mixed Cultures, FEBS Lett., 2007, vol. 581, no. 1, pp. 51–56.CrossRefGoogle Scholar
  46. 46.
    Engelberg-Kulka, H. and Hazan, R., Microbiology. Cannibals Defy Starvation and Avoid Sporulation, Science, 2003, vol. 301, no. 5632, pp. 467–468.PubMedCrossRefGoogle Scholar
  47. 47.
    Stragier, P., To Kill but Not Be Killed: a Delicate Balance, Cell, 2006, vol. 124, no. 3, pp. 461–463.PubMedCrossRefGoogle Scholar
  48. 48.
    Rice, K.C. and Bayles, K.W., Molecular Control of Bacterial Death and Lysis, Microbiol. Mol. Biol. Rev., 2008, vol. 72, no. 1, pp. 85–109.PubMedCrossRefGoogle Scholar
  49. 49.
    Dubnau, D. and Losick, R., Bistability in Bacteria, Mol. Microbiol., 2006, vol. 61, no. 3, pp. 564–572.PubMedCrossRefGoogle Scholar
  50. 50.
    Veening, J.W., Smits, W.K., and Kuipers, O.P., Bistability, Epigenetics, and Bet-Hedging in Bacteria, Annu. Rev. Microbiol., 2008, vol. 62, pp. 193–210.PubMedCrossRefGoogle Scholar
  51. 51.
    Davidson, C.J. and Surette, M.G., Individuality in Bacteria, Ann. Rev. Genet., 2008, vol. 42, pp. 253–268.PubMedCrossRefGoogle Scholar
  52. 52.
    Gardner, A. and Kümmerli, R., Social Evolution: This Microbe Will Self-Destruct, Curr. Biol., 2008, vol. 18, no. 21, pp. R1021–R1023.PubMedCrossRefGoogle Scholar
  53. 53.
    Pandey, D.P. and Gerdes, K., Toxin-Antitoxin Loci Are Highly Abundant in Free-Living but Lost from Host-Associated Prokaryotes, Nucleic Acids Res., 2005, vol. 33, no. 3, pp. 966–976.PubMedCrossRefGoogle Scholar
  54. 54.
    Prozorov, A.A. and Danilenko, V.N., Toxin-Antitoxin Systems in Bacteria: Apoptotic Tools or Metabolic Regulators?, Mikrobiologiya, 2010, vol. 79, no. 2, pp. 238–250 [Microbiology (Engl. Transl.), vol. 79, no. 2, pp. 129–140].Google Scholar
  55. 55.
    Van Melderen, L. and Saavedra, De Bast, M., Bacterial Toxin-Antitoxin Systems: More Than Selfish Entities?, PLoS Genet., 2009, vol. 5, no. 3, pp. 1–6.Google Scholar
  56. 56.
    Nieto, C., Pellicer, T., Balsa, D., Christensen, S.K., Gerdes, K., and Espinosa, M., The Chromosomal relBE2 Toxin-Antitoxin Locus of Streptococcus pneumoniae: Characterization and Use of a Bioluminescence Resonance Energy Transfer Assay to Detect Toxin-Antitoxin Interaction, Mol. Microbiol., 2006, vol. 59, no. 4, pp. 1280–1296.PubMedCrossRefGoogle Scholar
  57. 57.
    Wireman, J.W. and Dworkin, M., Morphogenesis and Developmental Interactions in Myxobacteria, Science, 1975, vol. 189, no. 4202, pp. 516–523.PubMedCrossRefGoogle Scholar
  58. 58.
    Kaiser, D., Signaling in Myxobacteria, Annu. Rev. Microbiol., 2004, vol. 58, pp. 75–98.PubMedCrossRefGoogle Scholar
  59. 59.
    Berleman, J.E. and Kirby, J.R., Deciphering the Hunting Strategy of a Bacterial Wolfpack, FEMS Microbiol. Rev., 2009, vol. 33, no. 5, pp. 942–957.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang, H., Dong, H., Zhao, J., Hu, W., and Li, Y.Z., Characterization of Developmental Autolysis in Myxobacterial Fruiting Body Morphogenesis with Profiling of Amino Acids Using Capillary Electrophoresis Method, Amino Acids, 2005, vol. 28, no. 3, pp. 319–325.PubMedCrossRefGoogle Scholar
  61. 61.
    Nariya, H. and Inouye, M., MazF, an MRNA Interferase, Mediates Programmed Cell Death During Multicellular Myxococcus Development, Cell, 2008, vol. 132, no. 1, pp. 55–66.PubMedCrossRefGoogle Scholar
  62. 62.
    Kalakoutskii, L.V. and Agre, N.S., Comparative Aspects of Development and Differentiation in Actinomycetes, Bacteriol. Rev., 1976, vol. 40, no. 2, pp. 469–524.PubMedGoogle Scholar
  63. 63.
    Hodson, D., Differentiation in Actinomycetes, in Procaryotic Structure and Function: a New Perspective, Mohan, S. et al., Eds., Cambrige Univ. Press, 1992, pp. 407–440.Google Scholar
  64. 64.
    Manteca, A., Fernández, M., and Sánchez, J., A Death Round Affecting a Young Compartmentalized Mycelium Precedes Aerial Mycelium Dismantling in Confluent Surface Cultures of Streptomyces antibioticus, Microbiology (UK), 2005, vol. 151, no. 11, pp. 3689–3697.Google Scholar
  65. 65.
    Manteca, A., Fernandez, M., and Sánchez, J., Cytological and Biochemical Evidence for an Early Cell Dismantling Event in Surface Cultures of Streptomyces antibioticus, Res. Microbiol., 2006, vol. 157, no. 2, pp. 143–152.PubMedCrossRefGoogle Scholar
  66. 66.
    Elizarov, S.M. and Danilenko, V.N., Multiple Phosphorylation of Membrane-Associated Calcium-Dependent Protein Serine/Threonine Kinase in Streptomyces fradiae, FEMS Microbiol. Lett., 2001, vol. 202, no. 1, pp. 135–138.PubMedCrossRefGoogle Scholar
  67. 67.
    Petrícková, K. and Petrícek, M., Eukaryotic-Type Protein Kinases in Streptomyces coelicolor: Variations on a Common Theme, Microbiology (UK), 2003, vol. 149, no. 7, pp. 1609–1621.CrossRefGoogle Scholar
  68. 68.
    Danilenko, V.N., Mironov, V.A., and Elizarov, S.M., Calcium as a Regulator of Intracellular Processes in Actinomycetes: A Review, Prikl. Biokhim. Mikrobiol., 2005, vol. 41, no. 2, pp. 319–329 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 41, no. 4, pp. 319–329].Google Scholar
  69. 69.
    Kennelly, P.J., Protein Kinases and Protein Phosphatases in Prokaryotes: a Genomic Perspective, FEMS Microbiol. Lett., 2002, vol. 206, no. 1, pp. 1–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Echenique, J., Kadioglu, A., Romao, S., Andrew, P.W., and Trombe, M.C., Protein Serine/Threonine Kinase StkP Positively Controls Virulence and Competence in Streptococcus pneumoniae, Infect. Immun., 2004, vol. 72, no. 4, pp. 2434–2437.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Vavilov Institute of General Genetics Russian Academy of SciencesMoscowRussia

Personalised recommendations