Advertisement

Microbiology

, Volume 79, Issue 6, pp 780–790 | Cite as

Ectothiorhodospira magna sp. nov., a new large alkaliphilic purple sulfur bacterium

  • I. A. Bryantseva
  • T. P. Tourova
  • O. L. Kovaleva
  • N. A. Kostrikina
  • V. M. Gorlenko
Experimental Articles

Abstract

Two strains of purple sulfur bacteria of the family Ectothiorhodospiraceae were isolated from moderately saline steppe lakes (with pH above 9.0) of the Transbaikal region (strain B7-7) and Mongolia (strain M10). The cells of the novel strains were spiral-shaped, 2.0–3.2 × 9.6–20.0 μm, motile due to a polar tuft of flagella. Photosynthetic pigments were represented by bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Photosynthetic membranes were represented by long strands of lamellae distributed throughout the whole cell; unlike most Ectothiorhodospiraceae species, the membranes were not packed into regular stacks. Bacteria were capable of weak growth on sulfide and slow grow on hydrogen under photoautotrophic conditions. The best growth was noted on sulfide in the presence of acetate and bicarbonate. Thiosulfate did not stimulate phototrophic growth, even in the presence of organic substrates. The new isolates were alkaliphiles growing at a pH optimum of 9–10. Growth was possible within a salinity range of 0–80 g/l NaCl, with an optimum at 5–15 g/l NaCl. The morphology, the structure of the photosynthetic apparatus (strands of lamellae), and the physiology of the new strains were similar to those of Thiorhodospira sibirica. However, analysis of the 16S rRNA gene sequences demonstrated that the studied isolates were closely related to the type strain Ectothiorhodospira shaposhnikovii (99% similarity) of the family Ectothiorhodospiraceae, whereas the level of similarity between the new strains and Thiorhodospira sibirica was only 94–95%. According to the results of DNA-DNA hybridization, the DNA-DNA homology level between the tested strains was almost 100%; the similarity between the new isolates and the type strain Ectothiorhodospira shaposhnikovii was only 58%. The isolates differed from other representatives of the genus Ectothiorhodospira in the structure of the gene encoding the key enzyme of autotrophic CO2 fixation, ribulose-1,5-bisphosphate carboxylase (RuBisCo), which was similar to the RuBisCo genes of members of another family of sulfur bacteria, Chromatiaceae. The new isolates of purple bacteria were described as a new species of the genus Ectothiorhodospira, Ect. magna sp. nov. with the type strain B7-7T (= VKM B-2537 = DSM 22250).

Keywords

soda lakes purple sulfur bacteria family Ectothiorhodospiraceae Ectothiorhodospira magna sp. nov. extremophiles alkaliphiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Imhoff, J.F., Hashwa, F., and Trüper, H.G., Isolation of Extremely Halophilic Phototrophic Bacteria from the Alkaline Wadi Natrun, Egypt, Arch. Hydrobiol., 1978, vol. 84, pp. 381–388.Google Scholar
  2. 2.
    Imhoff, J.F., Soliman, G.S.H., and Tüper, H.G., The Wadi Natrun: Chemical Composition and Microbial Mass Development in Alkaline Brines of Eutrophic Desert Lakes, Geomicrobiol. J., 1979, vol. 1, pp. 219–234.CrossRefGoogle Scholar
  3. 3.
    Imhoff, J.F., The Anoxygenic Phototrophic Purple Bacteria, in Bergey’s Manual of Systematic Bacteriology, 2nd ed., 2001, vol. 1, pp. 621–627.Google Scholar
  4. 4.
    Imhoff, J.F., The Family Ectothiorhodospiraceae, The Prokaryotes, 2006, chapter 3.3.326, pp. 874–886.Google Scholar
  5. 5.
    Gorlenko, V.M., Anoxygenic Phtototrophic Bacteria from Soda Lakes, in Trudy Instituta mikrobiologii imeni S.N. Vinogradskogo. Vyp. XIV. Alkalofil’nye mikrobnye soobshchestva (Proc. Winogradsky Institute of Microbiology, vol. 14. Alkaliphilic Microbial Communities), Moscow: Nauka, 2007, pp. 225–257.Google Scholar
  6. 6.
    Sorokin, D.Y., Gorlenko, V.M., Namsaraev, B.B., Namsaraev, Z.B., Lysenko, A.M., Eshinimaev, B.T., Khmelenina, V.N., Trotsenko, Y.A., and Kuenen, J.G., Prokaryotic Communities of the North-Eastern Mongolian Soda Lakes, Hydrobiologia, 2004, vol. 522, pp. 235–248.CrossRefGoogle Scholar
  7. 7.
    Gorlenko, V.M., Bryantseva, I.A., Rabold, S., Tourova, T.P., Rubtsova, D., Smirnova, E., Thiel, V., and Imhoff, J.F., Ectothiorhodospira variabilis sp. nov., an Alkaliphilic and Halophilic Purple Sulfur Bacterium from Soda Lakes, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 658–664.CrossRefPubMedGoogle Scholar
  8. 8.
    Bryantseva, I., Gorlenko, V.M., Kompantseva, E.I., Imhoff, J.F., Sling, J., and Mityushina, L., Thiorhodospira sibirica gen. nov., sp. nov., a New Alkaliphilic Purple Sulfur Bacterium from a Siberian Soda Lake, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 697–703.CrossRefPubMedGoogle Scholar
  9. 9.
    Gorlenko, V.M., Bryantseva, I.A., Panteleeva, E.E., Turova, T.P., Kolganova, T.V., Makhneva, Z.K., and Moskalenko, A.A., Ectothiorhodosinus mongolicum gen. nov., sp. nov., a New Purple Bacterium from a Soda Lake in Mongolia, Mikrobiologiya, 2004, vol. 73, no. 1, pp. 80–88 [Microbiology (Engl. Transl.), vol. 73, no. 1, pp. 66–73].Google Scholar
  10. 10.
    Kompantseva, E.I., Bryantseva, I.A., Komova, A.V., and Namsaraev, B.B., The Structure of Phototrophic Communities of Soda Lakes of the Southeastern Transbaikal Region, Mikrobiologiya, 2007, vol. 76, no. 2, pp. 243–252 [Microbiology (Engl. Transl.), vol. 76, no. 2, pp. 211–219].Google Scholar
  11. 11.
    Pfennig, N. and Lippert, K.D., Üher das Vitamin B12-bidürfnis phototropher Schwefel Bacterien, Arch. Microbiol., 1966, vol. 55, pp. 245–256.Google Scholar
  12. 12.
    Kämpf, C. and Pfennig, N., Capacity of Chromatiaceae for Chemotrophic Growth. Specific Respiration Rates of Thiocystis violacea and Chromatium vinosum, Arch. Microbiol., 1980, vol. 127, pp. 125–135.CrossRefGoogle Scholar
  13. 13.
    Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, I.Yu., Metody analiza prirodnykh vod (Methods for analysis of Natural Waters), Moscow: Nedra, 1970.Google Scholar
  14. 14.
    Dodgson, K.S., Determination of Inorganic Sulphate in Studies on the Enzymatic and Nonenzymatic Hydrolysis of Carbohydrate and Other Sulphate Esters, Biochem. J., 1961, vol. 78, pp. 312–329.PubMedGoogle Scholar
  15. 15.
    Bryantseva, I.A., Gorlenko, V.M., Kompantseva, E.I., Kuznetsov, B.B., and Osipov, G.A., Alkaliphilic Heliobacterium Heliorestis baculata sp. nov. and Emended Description of the Genus Heliorestis, Arch. Microbiol., 2000, vol. 174, pp. 283–291.CrossRefGoogle Scholar
  16. 16.
    Collins, M.D., Analysis of Isoprenoid Quinones, Meth. Microbiol., 1985, vol. 18, pp. 329–363.CrossRefGoogle Scholar
  17. 17.
    Marmur, J., A Procedure for the Isolation of Deoxyribonucleic Acid from Microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.CrossRefGoogle Scholar
  18. 18.
    Owen, R.J., Hill, L.R., and Lapage, S.P., Determination of DNA Base Composition from Melting Profiles in Dilute Buffers, Biopolymers, 1969, vol. 7, pp. 503–516.CrossRefPubMedGoogle Scholar
  19. 19.
    De Lay, J., Cattoir, H., and Reynaerts, A., The Quantitative Measurement of DNA-DNA Hybridization from Renaturation Rates, Eur. J. Biochem., 1970, vol. 12, pp. 133–142.CrossRefGoogle Scholar
  20. 20.
    Edwards, U., Rogall, T., Bloeker, H., Ende, M.D., and Boeettger, E.C., Isolation and Direct Complete Nucleotide Determination of Entire Genes, Nucleic Acids Res., 1989, vol. 17, pp. 7843–7853.CrossRefPubMedGoogle Scholar
  21. 21.
    Bulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Turova, T.P., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., and Gal’chenko, V.F., A Study of Nucleotide Sequences of nifH Genes of Some Methanotrophic Bacteria, Mikrobiologiya, 2002, vol. 71, no. 4, pp. 500–508 [Microbiology (Engl. Transl.), vol. 71, no. 4, pp. 425–432].Google Scholar
  22. 22.
    Spiridonova, E.M., Berg, I.A., Kolganova, T.V., Ivanovskii, R.N., Kuznetsov, B.B., and Turova, T.P., An Oligonucleotide Primer System for Amplification of the Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Genes of Bacteria of Various Taxonomic Groups, Mikrobiologiya, 2004, vol. 73, no. 3, pp. 377–387 [Microbiology (Engl. Transl.), vol. 73, no. 3, pp. 316–325].Google Scholar
  23. 23.
    Moskalenko, A.A., Makhneva, Z.K., Zhuravleva, Z.A., and Erokhin, Yu.E., Some Spectral Characteristics of Pigment-Protein Complexes and Their Interaction in Membranes of Thiorhodospira sibirica, Dokl. Akad. Nauk, 2002, vol. 382, no. 6, pp. 836–839 [Doklady Biochem. Biophys. (Engl. Transl.), vol. 382, pp. 63–66].Google Scholar
  24. 24.
    Tourova, T.P., Spiridonova, E.M., Berg, I.A., Slobodova, N.V., Boulygina, E.S., and Sorokin, D.Yu., Phylogeny and Evolution of the Family Ectothiorhodospiraceae Based on Comparison of 16S rRNA, cbbL and nifH Gene Sequences, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 2387–2398.CrossRefPubMedGoogle Scholar
  25. 25.
    Imhoff, J.F., Genus I. Ectothiorhodospira, in Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 2, part B, pp. 43–48.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. A. Bryantseva
    • 1
  • T. P. Tourova
    • 1
  • O. L. Kovaleva
    • 2
  • N. A. Kostrikina
    • 1
  • V. M. Gorlenko
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations